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Abstract

Thermal Conduction in the Vortex State of Unconventional Superconductors

Etienne Boaknin
Doctor of Philosophy
Graduate Department of Physics and Astronomy
University of Toronto
2003

Whenv a magnetic field is applied to a type II superconductor, the field penetrates
in the form of vortices wherein the superconducting order parameter vanishes over a
length scale of 100 A or so. Each vortex supports localized electronic states. Above
the upper critical field H,, the normal state is recovered and the electronic states are
fully delocalized. A basic question is to ask how the electronic states evolve from being
localized to delocalized as the intervortex distance is reduced (i.e. as the magnetic field
is increased).

For that purpose, we have performed systematic studies of the electronic thermal
conductivity k./T through the vortex state at temperatures as low as 50 mK and fields
as high as 13 Tesla. This was done in a variety of systems: V3Si, LuNiyB,C, NbSe; and
T1,BasCuQOg.s-

The work performed on the phonon-mediated V3Si, LuNi;B,C and NbSe; led to
many surprises. V3Si is an archetypal type-II superconductor and displays the expected
activated behavior. It provides a solid basis for comparison. However, we found that the
borocarbide superconductor LuNi;B,C has a highly anisotropic gap of unprecedented
magnitude (a factor of 10), while the layered compound NbSe; is found to display multi-
band superconductivity.

We also studied the overdoped cuprate superconductor Tl;BasCuOgys where the up-
per critical field was low enough for us to reach the normal state. The Wiedemann-Franz

law was tested and found to be satisfied with a 1% experimental accuracy. This rep-

iii



resents the first unambiguous evidence that the overdoped side of the phase diagram is
a Fermi liquid and displays no sign of spin-charge separation and thus provides a solid
basis for a comprehensive theory of the phase diagram of cuprate superconductors. In the
superconducting state, we find that Tl;Ba;CuOgys is the textbook example of a d-wave
superconductor as it shows quantitative agreement with theory.

In summary we obtained a range of behaviors in several different types of supercon-
ductors, from the test case of the conventional V3Si to the highly unconventional cuprates

and through highly anisotropic and multi-band superconductors.
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Statement of Originality

It is important to recall the earthquake that was started in the field of strongly
correlated electron systems by the discovery of high temperature superconductors. It
represents still today one of the biggest challenge in condensed matter physics. As such, it
has led to much research on high T, cuprates themselves, but has also generated interest in
many peripheral issues which are thought to be of prime importance to its understanding.
Good examples of this include 1/ the ruthenates, first thought to be directly related to
cuprates due to the similarity in their crystal structures, but which have been seen to
display new phenomena such as spin-triplet superconductivity in SroRuOQy; 2/ the physics
of quantum criticality has also been strongly revived in part due to the belief that it
may govern the phase diagram of cuprates; 3/ the interplay of superconductivity and
magnetism which has been studied in such systems as organic conductors, heavy fermion
systems and the borocarbides. These examples are a small subset of the phenomena
pertaining to high T,’s which have been studied and for which a growing understanding
exists. In this thesis, we are concerned with cuprates themselves but we have also turned
our attention to other forms of superconductivity.

The first project pertains to the non-magnetic members of the borocarbide family, in
particular, to LuNiyB,C. These materials were discovered in 1994 and were soon thought
to be quite conventional phonon-mediated superconductors with an s-wave gap. It is
only six or seven years later that we gave the first unambiguous proof that their gap
was highly anisotropic (Etienne Boaknin, R.W. Hill, Cyril Proust, C. Lupien, Louis
Taillefer, and P.C. Canfield, Phys. Rev. Lett. 87, 237001 (2001)). This situation is very
reminiscent of the early debates in high 7, cuprates where the gap was thought to have
s-wave symmetry until 1993 (seven years after their discovery) when it was convincingly
showed to have d-wave symmetry. Also, our results now stand as the first report of such
a large anisotropy (factor 10) in the gap of a superconductor with no topological nodes.
I expect this case of a highly anisotropic s-wave gap to serve as a reference point to
differentiate gaps with nodes and those with accidental minima in novel materials. All
experimental parts of this project were done by myself, with the help of Rob Hill, Cyril
Proust and Christian Lupien. The crystals were grown by our collaborator Paul Canfield.
The paper was written in most part by myself, Louis Taillefer, and Rob Hill, and with
the participation of all co-authors.

The recent discovery of the 40-K superconductor MgB, has led to a renewed interest



in exploring multi-band superconductivity were gaps of significantly different magnitudes
exist on different Fermi surfaces of a material. While much effort has been focused on
MgB, itself, we reported some of the first evidence for multi-band superconductivity
in a second compound, namely, NbSe, (Etienne Boaknin, M. A. Tanatar, Johnpierre
Paglione, D. Hawthorn, F. Ronning, R. W. Hill, M. Sutherland, Louis Taillefer, Jeff
Sonier, S. M. Hayden, and J. W. Brill, Phys. Rev. Lett. 90, 117003 (2003)). This
was yet another surprise as this material has been studied extensively since the early
60’s and was thought to be a rather conventional superconductor. We also show that
previous reports of anomalous properties could now be understood naturally with this
new interpretation. All experimental parts of this project were done by myself with the
help of Makariy Tanatar, Johnpierre Paglione and the support of other members of the
group. The samples of NbSe, were grown by Joe Brill. Jeff Sonier kindly provided us with
the same samples used in previous studies of both specific heat and muon spin resonance.
Steve Hayden provided us with V3Si samples which were also used previously for de
Haas-van Alphen studies. The paper was written in most part by myself, Louis Taillefer,
Makariy Tanatar, Johnpierre Paglione, and Filip Ronning, and with the participation of

all co-authors.

The Wiedemann-Franz law was experimentally observed 150 years ago and is ex-
tremely robust with no reports of it being violated until very recently by our group. It
relates, in a universal way, the electrical and thermal transport in a solid, and states
simply that the carriers of charge and heat are one and the same. In the context of
high temperature superconductivity, where the issue of spin-charge separation has been
central since their discovery in 1986, testing this law is a simple and elegant way to ver-
ify or negate the existence of spin-charge separation. However, this law only applies in
the normal state of superconductors such that one needs to apply a magnetic field large
enough to suppress the superconductivity completely. This turns out to be a difficult
task. After the observation of such a violation in the optimally doped superconductor
PCCO by our group, we turned our attention to the overdoped side of the phase diagram,
where the normal state is thought to be a conventional Fermi-Liquid. In highly overdoped
Tl,Bay,CuOg, we have found that the Wiedemann-Franz law is satisfied with an experi-
mental accuracy of 1% (Cyril Proust, Etienne Boaknin, R. W. Hill, Louis Taillefer, and
A. P. Mackenzie Phys. Rev. Lett. 89, 147003 (2002)). These results provide a strong
basis for a comprehensive theory of the phase diagram in cuprate superconductors by

establishing that there is no spin-charge separation in the overdoped regime but rather
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that these systems form a Fermi-Liquid. The experimental work was done in equal parts
by myself and postdoctoral fellow Cyril Proust and with the support of other members of
the group. The paper was written by myself, Cyril Proust, and Louis Taillefer, and with
the participation of all co-authors. The crystals were grown by our collaborator Andrew
Mackenzie.

In summary, this thesis presents studies of several forms of unconventional super-
conductivity. Many unexpected and novel results were obtained with the discovery of
a highly anisotropic gap in the borocarbides (long thought to have an isotropic gap),
the phenomenon of multi-band superconductivity in NbSe,, a material studied for over
40 years, and a clear experimental proof that there is no spin-charge separation, in the
overdoped regime of high T, cuprates, contrary to some theoretical proposals.

The work presented in this thesis has appeared in the following publications:

e "Heat conduction in the borocarbide superconductor LuNi;B,C”, Etienne Boaknin,
R.W. Hill, Christian Lupien, Louis Taillefer and P.C. Canfield Physica C, 341-348,
1845 (2000). (Invited Paper at the M2MS-HTSC-VI conference, Houston Texas)

e ”Highly Anisotropic Gap Function in Borocarbide Superconductor LuNi;B,C”, Eti-
enne Boaknin, R.W. Hill, Cyril Proust, C. Lupien, Louis Taillefer, and P.C. Can-
field, Phys. Rev. Lett. 87, 237001 (2001).

e "Heat Transport in a Strongly Overdoped Cuprate: Fermi Liquid and a Pure d-
Wave BCS Superconductor”, Cyril Proust, Etienne Boaknin, R. W. Hill, Louis
Taillefer, and A. P. Mackenzie, Phys. Rev. Lett. 89, 147003 (2002).

e "Heat Conduction in the Vortex State of NbSes: Evidence for Multiband Supercon-
ductivity”, Etienne Boaknin, M. A. Tanatar, Johnpierre Paglione, D. Hawthorn,
F. Ronning, R. W. Hill, M. Sutherland, Louis Taillefer, Jeff Sonier, S. M. Hayden,
and J. W. Brill, Phys. Rev. Lett. 90, 117003 (2003).
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Chapter 1
Superconductivity: an introduction

The phenomenon of superconductivity was discovered in 1911 by Kamerligh-Onnes in
mercury. Its most prominent physical property is that a superconductor can carry charge
perfectly well. In other words, its resistance is nil. It is not however until 1957 that a
theoretical model was developed to understand this behavior: Bardeen, Cooper and
Schriffer (BCS) [1, 2, 3] are responsible for this theoretical picture which is now seen as a
milestone in the field of strongly correlated electron systems and in physics in general. It
has made it possible to make superconductivity one of the best understood phenomenon
in condensed matter physics, although perhaps too well. The field of research matured

very rapidly, and soon, activity grew dim.

However, in the past 20 or 25 years, there has been a striking revival of interest.
This is due to the discovery of new materials displaying superconductivity for which
the BCS theory and its extensions are perhaps no longer entirely valid. New forms of
superconductivity emerged and to this day a proper theoretical picture remains to be

found.

The aim of this chapter is not to provide a complete or rigorous review of supercon-
ductivity. Instead, it will aim to first give an introduction of the main concepts that will
be of prime importance within this thesis. Secondly, it will review the foundations of the
original theory of superconductivity in order to show where it may fail in explaining new
forms of superconductivity or, in other words, unconventional superconductivity. The

chapter can altogether be skipped by a reader familiar with superconductivity.
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1.1 BCS theory of superconductivity

The BCS theory of superconductivity was developed in 1957 [2, 3]. It is a masterpiece
of theoretical work in the sense that it has provided a microscopic understanding of a
macroscopic phenomenon where the interactions of an uncountable number of electrons is
central. In addition to this, it is a theory with only one parameter: the critical transition
temperature Tt.

In a superconductor, electrons form Cooper pairs (pairs of electrons). The mechanism
that make these strongly repelling creatures pair is an attractive interaction which acts
via the lattice of the crystal. The Cooper pairs then condense into a single state (the
ground state of the system) which has a macroscopic coherence of both amplitude and
phase. The central physical concept is the gap that forms in the energy spectrum. Let
us follow the story of superconductivity through the eyes of BCS.

1.1.1 Cooper pairs

The first part in the development of the BCS theory was to show that the formation
of electron pairs is possible if electrons are attracted to one another by some potential.
This is called the Cooper problem [1]. He showed that this was indeed possible in a
Fermi-liquid (FL) [4]. He asked whether it would be energetically more favorable to add
a pair of bound electrons to a Fermi sea of electrons than to simply add two unbound
electrons. And indeed it was (in the presence of an attractive potential). The Fermi sea

is said to be unstable to Cooper pairs. The assumptions were the following:

e The ground state of the system is a Fermi-liquid

e Pairs have a total momentum equal to zero: one electron is in state k while the

other is in state -k
e Pairs are spin singlets. Their spin component is \/Li(l T =11m)

e The attractive potential Vi binding the two electrons is isotropic

The amazing result is that the pairing of electrons will occur independently of the
strength of this attractive potential: it can be arbitrarily small. As a note, the size of
these Cooper pairs is named the BCS coherence length and is given by {pcs = §o = aki;’%

where a = 0.15, vp is the Fermi velocity and T, is the transition temperature. Typically,
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this size is much larger than the average distance between two electrons in the material.

The question remains: how can one obtain an attractive potential between two electrons?

1.1.2 Attractive interaction

To obtain a full microscopic picture, one needed to understand the mechanism behind
the attractive interaction between clectrons. Indeed, in a vacuum, electrons will always
strongly repel one another due to the Coulomb force. In a material though, many other
ingredients can add spice to the sauce and it was found that phonons were the culprits.
That is, electrons can be attracted to one another via an interaction with a phonon. This
can be most simply understood in the following way: 1 / a negatively charged electron
creates a displacement of the positively charged lattice which is attracted to it, 2/ after
the first electron has passed, the lattice has not yet had time to relax and creates a region
of net positive charge with respect to the rest of the lattice, and 3/ a second electron is
attracted by this region of positive charge. Effectively, the second electron is attracted
to the second via a retarded interaction with the lattice. A rigorous treatment can be

found for example in [5] .

1.1.3 Macroscopic wavefunction

Now that we know that we can obtain one pair of electrons, we must ask ourselves
what happens to the entire system of electrons. It turns out that simply having all the
electrons form Cooper pairs is not enough to achieve superconductivity. This is simply
the beginning of the story.

The main achievement of the BCS theory was to find the macroscopic wave func-
tion Wpeg of the system of electrons. But indeed, Cooper pairs rather than individual
electrons are the starting components of the wavefunction. The latter is written in the

following form within the framework of second quantization:

| ¥scs) = H(uk + Uk c}LcT CT—kl)|O> (1.1)

all k
where uy, and vy, are the so-called coherence factors and are complex numbers , c};T (cT_,c )
is the creation (destruction) operator for a state of momentum k (—k) and spin up
(down). |0) is the vacuum state. The magnitudes of the coherence factors are related by

|ug|2+|vk|? = 1 and represent respectively the probability of finding the Cooper pair state



4 CHAPTER 1. SUPERCONDUCTIVITY: AN INTRODUCTION

(k 1, —k |) empty (ug|?> = 1 — |v|*) or occupied (Jug|?). These parameters characterize
the superconducting state.

Without venturing into the formalism, we note that the important result is that all the
Cooper pairs are condensed into a single state and are phase coherent. This macroscopic

coherence is in fact the main and only necessary requirement to obtain superconductivity.

1.1.4 The superconducting gap

One of the most characteristic features of a superconductor is a gap A in the electronic

excitation spectrum which develops below Te. It is given by the following relation:
Appr = —Zka'Uk'Uk' (1.2)
k

where Vi is the attractive potential between two electrons. In its simplest form (the

one used by BCS), it is given by:

~Vif e — d |e-x — < hw
chl:{ if |ex —er| and |e—x — er| w (1.3)

0 otherwise

where ¢ is the excitation energy (see below), ep is the Fermi energy and Aw, is some
cutoff energy. Two main factors must be noticed about this relation: 1/ the potential is
isotropic and 2/ it has no momentum dependence and has a sharp cutoff energy that is
of the order of the Debye energy (the energy of the phonons responsible for the pairing).
Following through, one obtains that the superconducting gap is isotropic and has a value

at zero temperature of:
Apcs(T = 0) = 1.76 kg1, (1.4)

Its temperature dependence is shown in Fig. 1.1a. It is zero above T, and grows as
1.74(1 — T/T.)*/? near T, to a constant value Apcs(0) below about 0.4 Te. In the weak
coupling limit (when N(er)V < 1, where N(er) is the density of states at the Fermi
energy), it is also given by Apcs = 2hw.e YNERV  To lighten the notation, we will refer
to the BCS gap simply as A henceforth.

The superconducting gap plays a major role in the excitation spectrum which has the

form:

E, = \/(Ek - 6F)2 + A2 (1.5)

where ¢, refers to the excitation spectrum of the Fermi liquid and ep is the Fermi energy.

It is displayed in Fig. 1.2a. Another way to present it is to look at the density of states
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Figure 1.1: The temperature dependence of the superconducting gap (here labelled €) [2]. At
T =0, the gap is predicted to be A(0) = 1.76 kpT,.

as a function of energy (see Fig. 1.2b) which is given by:

Ns(B) _ | gy 1 B> A (1.6
Ny (er) 0if E>A

There are no states below A and a singularity at Ey = A where E; = ¢, — €p. The
density of states then decreases to its normal state value Ny(er).

The superconducting gap is central in explaining many of the physical properties of
superconductors. But more importantly, it is also associated directly with the order

parameter as will be discussed below [6].

1.1.5 Notable physical properties

The success of BCS theory was very quickly known as it predicted correctly all experi-
mental observations. The most notable ones are presented here.

Thermodynamically, superconductivity appears through a second order phase transi-
tion. In this case, a discontinuity appears at T, in the specific heat as seen in Fig. 1.3a.
1. = 1.43 (for a table of

This discontinuity was correctly predicted to be %S|Tc = g—’—c%vc—&
values of this ratio in different materials, see for example [7]).
Also, many thermal or transport properties display an activated behavior below 7.
This is caused by the gap in the electronic excitation spectrum. For example, the heat
capacity in the superconducting state normalized by its normal state value is seen to obey
é’% = ¢~2/ksT [g] (although the BCS prediction is slightly different). The predicted
thermal conductivity [9] is similar and was confirmed experimentally [10] (see Fig. 2.4).
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Figure 1.2: (a) Normalized density of states as function of energy for an s-wave supercon-
ductor. It is nil below the superconducting gap. (b) The excitation spectrum for an s-wave

superconductor near the Fermi surface. It is characterized by the superconducting energy gap.

Also, other effects were observed which were a directly related to the coherence factors
from BCS theory. This was the case for ultrasound attenuation which shows a sharp
drop at T, and the nuclear relaxation rate 1/77 which, instead, is predicted to rise below
T, (see Fig. 1.3b). This "peak” was first verified by Hebel and Slichter in 1957 [11].

1.2 Type II superconductivity

The most determining property of superconductors (after their nil resistivity) is the
fact that they display perfect diamagnetism. Indeed the magnetic field inside a super-
conductor is always equal to zero. However, this is correct only for so-called Type I
superconductors. Instead, for the second kind (Type II superconductors), the magnetic
field can and does penetrate, but in a very particular way: in the form of vortices. This
was first postulated theoretically by Abrikosov [12].

The generic phase diagram for type II superconductor is shown on Fig. 1.4a. One
can see that, in addition to the Meissner state where one gets perfect diamagnetism (for

H < H,), there exists another state where the magnetic field does penetrate in the form
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Figure 1.3: (a) The heat capacity of Aluminium (T = 1.2 K) as a function of temperature
in the superconducting state and in the normal state (for H > H.) [8]. The jump at T¢ is
characteristic of a second order phase transition and its size is in agreement with BCS theory
of superconductivity. Below T, the behavior is activated and agrees with a superconducting
gap of magnitude A(0) = 1.76 T,. (b) The predicted behavior of the ultrasound attenuation o
(labelled "I” here) and the nuclear relaxation rate (labelled ”II”). The sharp drop in the former

and the increase (or peak) in the latter are a product of the coherence factors from BCS theory.

of vortices. They form a vortex lattice that was rightfully predicted to be triangular
[13]. Above the upper critical field H, the normal state of the system is reached.
Another way to express the magnetic diagram is seen in Fig. 1.4b. There, one sees that
the internal magnetic field B is zero with respect to applied field H until H = Hq.
The magnetic field is then allowed to penetrate the sample but incompletely. Beyond
H,,, the superconductivity is destroyed and the normal state is recovered. Note that all
superconductors of interest in the last two decades are of type II.

We will review the main characteristics of type II superconductors starting by intro-
ducing the two characteristic length scales (magnetic and electronic) to better review

their main properties.

1.2.1 Length scales of superconductivity

A type II superconductor is defined as having x > —\}—5 where Kk = % We will thus first

discuss these two length scales associated with superconductivity: the coherence length



8 CHAPTER 1. SUPERCONDUCTIVITY: AN INTRODUCTION
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Figure 1.4: (a) The generic H-T phase diagram for a type II superconductor. Below Hg, no
field penetrates the superconductor: this is the Meissner state. Between H. and Hg is the
vortex state where the field penetrates in the form of vortices. Above Hz the normal state is
recovered. (b) Another way to see this is to look at the internal magnetic field B as a function

of applied field H.

¢ and the magnetic penetration depth A. They are both best understood in the context
of the Ginzburg-Landau (GL) theory of second order phase transitions [14]. There, the
order parameter of superconductivity is the macroscopic wave-function itself. It is nil
above T, and smoothly becomes non-zero below T,. This is modelled simply by writing
the free energy density as

B2
81

1
2m*

£.00) = fn(©) + oW + D1t + 2| (EV - SAypp+ (L.7)

where the subscript refers to the superconducting or normal state and ¥ is the order
parameter, in this case, the superconducting wave function. It was also identified by
Gor'kov that the order parameter is the gap function such that ¥ o< A [6]. The parameter
« is negative below T, and has a temperature dependence || o< (T — T¢) whereas  is
independent of temperature to first order. Minimizing the free energy one easily finds
that |¥|> = — 5.

The London penetration depth A\p

The magnetic field varies in a superconductor on the characteristic length scale called

the London penetration depth A;. For example, in a magnetic field and at the interface
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between a superconductor and vacuum, the magnetic field will go to zero inside the SC
over this characteristic length scale. This result can be obtained by using the London
approximation for the GL equations (assuming that the order parameter does not vary
in space). This describes the spatial variation of the magnetic field in a superconductor

and gives:
m*c? mc?

22 (1.8)

- 4rnge*? - 4mnge?
where m* and e* are the masses and charge of the relevant particles: Cooper pairs and
therefore m* = 2m and e* = 2e. Also, n, = |¥|? is defined to be the superfluid density
and represents the density of Copper pairs. The temperature dependence is found to be:
NT) = =

The penetration depth can be measured via several magnetic probes such as muon
spin resonance (uSR), which measures the spatial variation of the magnetic field within
the vortex lattice and infers an absolute value for A;. The temperature dependence A\(T)
can be measured more precisely in the Meissner state by following the effective volume
which displays diamagnetism (for example, via magnetic induction or microwave cavity
perturbation techniques). A rough estimate can also be obtained by the measured lower
critical field H,;. Indeed, they are related in the following way: H¢ = Z%\l{ (In(k)+0.497)

where @, is the flux quantum and x = A/£. And so, in many instances, A} ~ 4—7%%.

The Ginzburg-Landau coherence length §

The coherence length is the characteristic length scale over which the order parameter
varies. For example, at the interface between a superconductor and a vacuum, | @2 will
go from zero outside to its full amplitude inside over this characteristic length scale. It
is obtained via the GL equations which give:
52
¢(T) = [T (1.9)
Its temperature dependence is given by the coefficient |a(T)| ox 1 — (T/T).
This quantity is very hard to measure directly. It is usually inferred by the upper

critical field H.. They are related in the following way:

2 _ Qo
g (T) - 27TH62(T)

However, the radius of the vortex cores can be measured directly by Scanning Tun-

(1.10)

neling Microscopy (STM) or by uSR. The latter is a magnetic probe and may seem out
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0¢ R r —-—

Figure 1.5: The spatial variation of the order parameter and the magnetization around a single
vortex. The order parameter (i.e. the wave function or the gap) goes to zero at the center of

the vortex whereas the internal field h(r) is maximal there and zero outside of it.

of place, but there exists a magnetic signature of £ in the spatial profile.

1.2.2 Vortex state

Vortices form because it is more energetically favorable to have domain walls between
superconducting and normal metal in a type II superconductor. These walls are always

found at the boundaries of a physical sample but vortices also constitute such walls.

Flux quantization

As explained above, the field penetrates the superconductor in the form of vortices.
However, it turns out that the magnetic flux through each vortex has a fixed value: the
flux quantum ®,. The physics that lies behind this is most easily understood by thinking
of a superconducting ring. The macroscopic wave function must be single valued on that

ring. For this reason, the flux going through this ring is quantized and has a value of:

h
he P 207 %1072 T em? (1.11)

D = ndy =n—
n%o e* 2e

This result, first verified experimentally by Deaver and Fairbanks and by Doll and
Nébauer [15, 16], comprises the fact that the ”elementary” particles of the macroscopic
wave function are Cooper pairs that have an effective charge e* = 2e.

This result also implies that knowing the field B inside a superconductor, we can
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estimate the density of vortices:

Number of vortices B

= — 1.12
unit area Py ( )
Or better yet, know the intervortex separation d as a function of field:
Q
do~ g — 1.13
d (1.13)

This relation holds true for all type II superconductors. It also gives us a natural way
to understand why the upper critical field is related to the coherence length by Eq. 1.10
(note that B ~ H near Hc). The superconductor will reach the normal state when the

intervortex distance is roughly equal to the diameter of a vortex core (i.e. d =~ 2§ )

Bound states in the vortex core

A vortex is, to first order, a core of normal metal surrounded by a superconductor. This
arrangement can be seen as a potential well for the "normal electrons” that are in the
vortex. As in any quantum mechanical potential well, discrete (quantized) energy levels
are formed for states which have a wave function confined to the well. These so-called
bound states were predicted by Caroli, de Gennes and Matricon in 1964 [17].

It has been very hard to detect the existence of these bound states. For one, an elec-
tronic probe is required and it must have a distinct signature of localization within the
vortex state. Experimentally, the specific heat of a type II superconductor in the vortex
state is rightfully predicted to be proportional to B, in other words, to the number of
vortices. It then reaches its normal state value at Hg. This is a volumic argument using
the simple notion that the volume inside a vortex core is a normal metal. However, the
verification of this property hardly gives information about the nature of the electronic
excitations within the vortex cores, namely, whether they are localized or not. On the
other hand, the thermal conductivity is a transport property and only delocalized quasi-
particles can contribute to it. Its activated behavior with respect to a magnetic field (in
Nb for example [20]) has perhaps been the first experimental verification of the existence
of such localized states. More specifically, a growing heat capacity without the corre-
sponding transport proves that the excitations are localized. This idea will be reviewed
in more detail throughout this thesis as it is one of its central aspects (see Chapters 5
and 6).

Direct measurements of such states had to wait until 1989 when the vortex state of

NbSe, was imaged directly via Scanning Tunneling Microscopy (STM) [18] and yielded
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Figure 1.6: Scanning tunneling spectroscopy in NbSe;. (a) Local tunneling conductance at the
center of the vortex core, near it and as far away from it (from [18]). One sees a peak in the
conductance at the vortex center and the recovery of a superconducting gap away from the
vortex core. (b) The conductance at both zero bias and at 0.5 mV as a function of distance
away from the vortex core in two directions for NbSes [19). The decay is exponential and is

taken to be the signature of bound states.

strong evidence for the existence of such states (see Fig. 1.6a). The signature for such
bound states is a peak in the density of states (DOS) above the vortex core. This DOS is
also found to drop exponentially away from the vortex core as expected (see Fig. 1.6b).
One should note that additional theoretical treatment was necessary to correctly under-
stand the experimental data [21]. It is also important to note that such bound states
were not observed in other systems where STM studies have been possible 1. YNi,B,C
and MgBs, [23, 24, 25]. The reason for this will be discussed and understood later in this

thesis from results presented here.

1.3 Unconventional superconductivity

The revival of interest in superconductivity through the past 20 years has been fuelled
mainly by the emergence of new forms of superconductivity found mainly in heavy
fermion systems, high temperature cuprates and organic conductors. The term ”un-

conventional superconductivity” is often used in this context. The definition of this term

1Bound states have been imaged however in the high temperature superconductor BSCCO [22]. These
results are unexpected due to the d-wave nature of the superconducting gap.
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is less clear and can differ significantly from one author to the next. This section will
explain what is meant in this thesis by unconventional superconductivity. For this, it
will review the basic assumptions of the traditional theories of superconductivity and see

what extensions or modifications can occur.

1.3.1 Non s-wave superconducting gap

In the simplest theory, the attractive interaction between electrons is isotropic and there-
fore results in an isotropic s-wave superconducting gap. In fact, it has been rigourously
shown that, in the case where the attractive interaction is mediated by an electron-
phonon mechanism, the symmetry must be of this kind. Moreover, the superconducting
gap represents the order parameter of the superconducting state and its symmetry is a
defining factor of its nature. It is therefore important to have a good understanding of
the gap of any superconductor.

Three types of "non s-wave” gaps will be discussed: gaps of lower symmetry, highly

anisotropic gaps, and band-dependent gaps.

Gaps of lower symmetry

In the case of spin-singlet superconductivity, the symmetry of the gap function must be
even in order not to violate Fermi-Dirac statistics. In general, in all superconductors,
the gap is composed of all the symmetries that are permitted but with one channel being
dominant (to various degrees). Of course, in conventional superconductors, the dominant
channel is s-wave.

Remembering first-year orbital physics, the simplest even symmetry after s is d. It has
been found very convincingly that the symmetry of the gap in high T, superconductors
(HTSC) is d,2_,2 [26]. However, other symmetry groups have been proposed for other
systems although the case is less clear than in HTSC. A good review of such symmetry
groups can be found in [27].

The main characteristic of these symmetry groups are the topological nodes that are
associated with them. In most cases, this implies that the gap function will be zero in
some parts of the Fermi surface. There are two main types of nodes: line nodes (most
common) and point nodes.

It has also been proposed that the gap function of HTSC may have an additional

component to the d,2_,2 one. A gap with a d,2_,2 + iz symmetry where the imaginary
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part z is either s or dy, is being envisaged [28].

Highly anisotropic gap

Much debate is often raised when a superconductor is thought to have a gap with
nodes (i.e. implying a symmetry other than s). Indeed, the gap may simply be highly
anisotropic but without having topological nodes or zeros. The fact that a gap is highly
anisotropic is still a strong deviation from the simplest theory and implies additional
physics. As a note, the largest reported gap anisotropy in elemental superconductors is
of a factor of 2 [29]. A highly anisotropic gap of s-wave symmetry has been proposed
for borocarbide superconductors Re-NigB,C with Re = Lu, Y and will be the subject of
Chapter 5.

Multi-band superconductivity

Multi-band superconductivity refers to the case where the superconducting gap has a
significantly different value on different bands of the Fermi surface (see for example [30]).
Usually, one uses the approximation that the system has effectively one band and one gap.
There is a very good reason for this: bands are usually well coupled and can be treated in
such a way. However, when there are two bands of distinct characters responsible for two
sets of Fermi surfaces, it may be that these are strongly decoupled. It is then possible
that superconductivity stems from one set of bands and is induced on the other via a
proximity type of effect. On the other hand, the source of such poor coupling between
bands is not well understood. This was first reported in 1980 in SrTiO3; but is now
being actively studied as it seems to be displayed in MgB, (T, = 40 K) and in NbSey, a
superconductor hitherto thought to be conventional. Chapter 6 will review the case of
NbSes.

1.3.2 Non spin-singlet superconductivity

One of the first assumptions in the Cooper problem is that the pair is formed in a
spin singlet state. This is naturally the lowest energy state since it has a total angular
momentum of zero. However, it has been suggested that some superconductors display
spin-triplet superconductivity. This has the effect of imposing that the symmetry of the
superconducting gap be odd. The lowest such symmetry is p-wave, as has been proposed
for SroRu0O, [31].
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1.3.3 Non electron-phonon mechanism

Another source of unconventional superconductivity comes from a pairing mechanism not
mediated by phonons. This is to say that it is mediated by a purely electronic mechanism
of some form or other. It is a simple extension of BCS theory but with another bosonic
excitation mediating the pairing. This is necessarily the case for superfluid 3He [32] where
spin fluctuations are thought to be the glue for Cooper pairs.

It is very difficult experimentally to verify such an assertion. However, if the gap
function of a superconductor is found to have topological nodes, it is often inferred that
the pairing is non-phononic. Another clear indication of unconventional pairing is the
presence of several phases of superconductivity as seen, for example in UPt3. There, two
(or more) distinct superconducting order parameters are observed [33].

It is strongly thought to be the case for high T, cuprates. A phononic interaction is
not thought to be able to give such high transition temperatures. What’s more, the order
parameter is found to have d-wave symmetry. However, other proposals seek yet another
answer: a form of superconductivity which does not even implicate Cooper pairing via a

bosonic excitation.

1.3.4 Other proposals

With the emergence of new forms of superconductivity, many authors have argued that a
complete change of paradigm was necessary to obtain a theoretical understanding. Many
of them stem from the likelihood that the normal state of these materials may not be
Fermi liquids. The most prominent examples of such new proposals are those involving
spin-charge separation [34, 35, 36]. In one of these [36], the superconductivity would
stem not from Cooper pairing but rather, from the condensation of novel excitations,
namely, charge e bosons. These scenarios are extremely attractive but have yet to be

verified experimentally.

1.3.5 Summary

In summary, many new materials display superconductivity which is not well described by
the conventional BCS theory. Some of these forms of unconventional superconductivity
are viewed as extensions of the BCS formalism (e.g. non-phonon pairing mechanism),

whereas others propose a complete change of paradigm (e.g. no Cooper pairing).
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1.4 Conclusion

We have reviewed some important concepts relevant to superconductivity which have
been studied both theoretically and experimentally over the past century. In this the-
sis, we will be interested in three forms of unconventional superconductivity that have

emerged only in the past 20 years or so. To this effect, we have defined what we mean

by ”unconventional superconductivity”.



Chapter 2
Review of thermal conductivity

In this thesis, we present studies of several forms of superconductivity from the most
conventional types to the elusive high T, cuprates. Moreover, the superconducting state
(H = 0), the vortex state (Hy < H < H_.;), and the normal state (H > H.,) are inves-
tigated successively by applying a magnetic field. To do so, we use thermal conductivity
and resistivity measurements. This chapter will give a review of these transport prop-
erties, first in metals and insulators and then in superconductors. The reader will find
an emphasis on the low temperature behavior which we are mostly interested in for two
main reasons: an easy quantitative understanding of the measurements, and obtaining

information about the ground state of the systems (' — 0).

2.1 Transport properties: definition

The two main longitudinal transport properties of a solid are the electrical and thermal
conductivity, 0z, and kg These are defined to be the coefficient of proportionality
between the current density of charge J¢ (or heat JZ) applied along the z direction
and the gradient of voltage V.,V (or temperature V,T') which develops along that same

direction (see equations 2.1 and 2.2).
J = =0z X ViV (2.1)

Jl = —Kyy X VT (2.2)

The negative sign indicates that the charge (or heat) flows from the high to the low

voltage region (hotter to the colder region). We can write these expressions in a more

17
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practical way and drop the subscripts for simplicity

I/cross — section
= = I/AV 2.3
O = AV iongth Y (2:3)

Q/cross — section .
= = A 24
AT longth 2 X 9/AT (24)

where I and Q are the applied currents and the geometric factor « is the length divided

by the cross section.

2.1.1 Carriers

The transport of charge in a solid is done solely by electrons. However, several carriers
can contribute to the thermal conductivity. The two main carriers are electrons and
phonons, but spin excitations can also contribute [37, 38, 39]. The only requirements
are that the excitations be extended and that they carry entropy. The total thermal

conductivity is the sum of all the contributions:

Ktot = Ke + FKph + - (2.5)

2.1.2 Scattering mechanism

In a simple picture, materials have a finite conductivity because the current of carriers
can be degraded by various processes. These are usually described by a scattering rate
771 (where 7 is usually referred to as the lifetime) which comes out from the relaxation
time approximation [7]. However, several mechanisms can degrade a current of electrons
or phonons. In other words, there exists several scattering rates 7;”' (where 4 refers to
the mechanism; e.g. electron-phonon scattering) leading to an effective scattering rate

Te}fl given by Matthiessen’s rule:
T =T AT AT (2.6)

As a result, the electrical and thermal resistances (p = 0~ and k1) of each scattering

process are additive.

p=pitpitprt.. (2.7)
nc_l = mc—il + fs:c—yl + n;l + ... (2.8)

where i, j and k refer to the type of scattering mechanism. For the thermal conductivity,

¢ refers to the type of carrier (see equation 2.5).



2.2. TRANSPORT OF ELECTRONS 19

2.2 Transport of electrons

The purpose of this section is to give a review of main concepts and assumptions related
to electronic transport. It will also give the central usable relations but will not go in

depth into rigorous theoretical treatments although the proper references are included.

2.2.1 Electrical conductivity

The conductivity (or resistivity p = 0~ !) of materials can yield very useful information
such as the purity of a sample, the presence of strong electron-electron interactions,
the onset of some type of ordering or even various phase transitions (most notably, a
superconducting transition), map the Fermi surface via quantum oscillations (Shubnikov-
de Haas effect), or reveal the presence of localization. What’s more, it is very easy to
measure in a wide range of environments such as very low temperatures, high pressure
and high magnetic fields, and this, with a rare level of precision.

In its simplest form, the electrical conductivity is well described by the Drude theory
of metals which gives [7]:

o = ne*r/m* (2.9)

where n is the electronic density !, e is the charge of the electron and m* is the effective
mass of the electron 2. Much information may be retrieved from the resistivity with a
good understanding of the scattering mechanisms which may be at play, as discussed
below. Countless other effects can also lead to precious information but will not be

covered here.

2.2.2 Thermal conductivity

The thermal conductivity can also uncover useful information, in particular within the
superconducting state. Indeed, the electrical conductivity is then ”shorted out” and the
only transport probe available is k. However, let us first understand the behavior of k in
a metal.

There, it is dominated by electronic transport. In the semi-classical approach and

1Note that N(Ep) = 5%‘; = E:i_?;%' with N(EF) being the density of states at the Fermi surface and
Er and vp are respectively the Fermi energy and velocity.

2This is a consequence of Fermi-liquid theory [4] whereas a system of interacting electrons can be
described in the same way as a system of non-interacting electrons which have a renormalized mass m*.



20 CHAPTER 2. REVIEW OF THERMAL CONDUCTIVITY

using the relaxation time approximation, one arrives at the relation
1.5 1
Ke = gC’UFT = ngFl (2.10)

where C is the heat capacity, vr is the Fermi velocity, and [ is the mean free path (defined
as | = vp7). The heat capacity is given by the well-known relation:

2

C= %N(EF)szT = n2kE——

*
m’UF

T (2.11)

The linear temperature dependence of C is a direct consequence of the fermionic nature
of electrons. In the same stride, a linear thermal conductivity at 7 — 0 (denoted
koo/T = k/T|r—0) is fundamentally an indication of delocalized fermionic excitations in
a system. At higher temperature, one also needs a good understanding of the possible

scattering mechanism to obtain information from k.

2.2.3 Scattering rates

Understanding the scattering rates through, for example, their magnitude and temper-
ature dependence, will lead to a proper analysis of the transport properties in a mate-
rial. Let us review the most common ones, namely, impurities, phonons and electrons
although it must be reminded that this list is less than extensive. For these, the tem-
perature dependence of the scattering rates, the resistivity, the heat capacity and the
thermal conductivity are compiled in table 2.1 and are discussed briefly below. A good
review of these mechanisms in alkali metals can be found in [40]. As a note, the Fermi

velocity of the electrons is always assumed to be independent of temperature.

Impurities and crystal defects

The scattering of electrons by impurities is an elastic process in that the energy of the
electron is conserved. It is easy to understand that this mechanism will be independent
of temperature and lead to 77! oc T°. It is dominant at low temperatures as shown in
Fig. 2.1 and gives rise to what is referred to as the residual resistivity po. This value is
a measure of the purity of the sample, i.e. of the density of impurities.

It is interesting to note that the Wiedemann-Franz law (described in detail below)
which relates the electrical and thermal conductivity is satisfied if this scattering mech-
anism is dominant. Indeed, a condition for the applicability of the WF law is elastic

scattering.
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Conductivity ¢ or x¢

Defects Phonons

Figure 2.1: This figure shows the thermal and electrical conductivities in a conventional metal
(after [41]). The dominant scatterers are impurities at low temperatures and phonons at higher

temperatures. The higher curves are for purer samples.

Phonons

In a normal metal, phonons play a major role in the scattering of electrons. However, it
leads to different temperature dependences for temperature of 7 > 0.7 ©p and T' < Op.
For high temperatures, the scattering rate is found to be linear in temperature 7= o T
and leads to a linear resistivity and a constant thermal conductivity (see Fig. 2.1). It
is useful to note that the magnitude of this term is well understood within the Bloch-
Griineisen formalism and can lead to a measure of the electron-phonon coupling constant
[42].

For T < 0.1 ©p, the scattering rate is proportional to T3. It is however found
theoretically that the resistivity will have a T° temperature dependence under certain
conditions (for example, an isotropic Fermi surface). Indeed, at T <« ©p, only phonons
with a small wavevector can contribute to a scattering event. As a result, the degradation
of the electrical current will favorably be done via forward scattering [7, 40] and lead
to this additional temperature dependence. In practice, the scattering mechanism is

assigned to phonons for a resistivity p oc T* with 3 < a < 5 at low temperatures.
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Electron scatterers  77° p ¢ &
Impurities 7° T° T T
Phonons (T'< 0.10p) T3 T* 3<a<b T T2
Phonons (T > 0.70p) T T T T°
Electrons T? T? T T

Table 2.1: Electrons are scattered via various mechanisms. This table shows the temperature
dependence of the scattering rate 771, the resistivity p, the heat capacity C and the thermal

conductivity x associated with several of these. ©p is the Debye temperature of the metal.

Note that a transition from a T3 to a T2 behavior of the resistivity is seen in super-

conductors with high electron-phonon coupling and high disorder [43].

Electrons

Electron-electron scattering is usually weak in metals. It becomes dominant in strongly
correlated electron systems such as heavy Fermions. It results in 7=! oc 72 which
leads to the celebrated T2 resistivity seen as an indication of a Fermi-liquid ground
state. What’s more, the magnitude of the T2 term of the resistivity is empirically ob-
served to obey the Kadowaki-Woods ratio [44]. The latter shows the universal rela-
tion A/y* = 1 x 10~°uQlem (mole K mJ~1)? where p = po + AT?. It is also seen that
A/y?* ~ 0.4x10~%uQcm (mole K mJ~1)? for transition metals such as Pd, Pt and Ni [45].
These relations may help determine if a T2 resistivity is indeed due to electron-electron

scattering and if a system shows strong correlations or not.

Summary

In summary, many scattering mechanism may lead to different power laws of the electric
transport properties. The most common ones have been discussed. Some of them have
been studied in detail and are understood quantitatively. It is also clear that different
scattering mechanisms will dominate at different temperatures as is shown in Fig. 2.1
where the electrical and thermal conductivity of a metal is shown as a function of tem-

perature for different purities.
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2.2.4 Wiedemann-Franz law

Very often, the thermal conductivity does not yield much additional information from
that obtained via resistivity. This is due to the fact that they are related directly by
the Wiedemann-Franz law. This universal relation may be obtained by combining equa-

tions 2.9, 2.10 and 2.11, to get:
k k% 8
_— = = . - K_2 2.12
T = 32 Ly =245 x 107°W Q (2.12)

where L, is the Sommerfeld value of the Lorenz number. It simply states that the carriers

of charge and heat (or entropy) are one and the same. However, our interest stems in its
possible violation in the normal state of cuprate superconductors as claimed by Hill et
al. [46]. Let us review the universal nature of this law to better understand the profound
implications of its violation.

Historically, it was first reported experimentally by Wiedemann and Franz in 1852
[47]. They found that the Lorenz number (%) was the same for many metals at room
temperature (for a table of values, see [7]). As it turns out, this law is extremely robust

as has been demonstrated both experimentally and theoretically since this time.

The robustness of the WF law

The derivation of the WF law presented above is one of the simplest ways to achieve the
result. However, we have used a number of assumptions to obtain it. Some of these are
necessary and hold the essence of the WF law but others do not and can be generalized.
For example, we have used simple results from the band theory of electrons with an
isotropic Fermi surface, results from kinetic theory (equation 2.10), the relaxation time
approximation, etc. The most general derivation of the WF law was made by Chester and
Tellung [48] in 1961. They only assumed non-interacting electrons, an elastic scattering
mechanism and an isotropic system !. They also showed that the WF law was valid for
any strength of scattering [48]. The derivation was then further generalized to anisotropic
systems [49], any level of disorder (weak or strong localization regimes) [50], any strength
of a magnetic field [49] and in both 2 and 3 dimensions but not strictly in 1 dimension.
This leads to the assumptions that are at the heart of the WF law:

1. Same carriers of heat and charge

1Note also that the "zeroth” assumption was that they were dealing with electrons, i.e. particles that
obey Fermi-Dirac statistics and that carry a charge e
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Figure 2.2: The normalized Lorenz ratio L/Ly where L = 514’- as a function of tempera-

ture (I'/©p with Op is the Debye temperature) for several purity regimes (after [41]). The
Wiedemann-Franz law is satisfied in all cases at low temperatures. However, at higher tem-
peratures, L/Lj becomes smaller than 1 as the heat current is degraded more easily than the

charge current.
2. Carriers have charge e ?
3. Carriers obey Fermi-Dirac statistics

4. The scattering is elastic (no energy is transferred during a scattering event) 2

Experimentally, the WF law has been verified at T — 0 in all systems investigated to
date. It is verified in simple metals of course, but also in systems with strong electronic
correlations such as heavy Fermion systems (UPt3 [51], CeAl; [52] and CeCug [53] for
example), quasi two dimensional systems such as SroRuQO, [54] and NbSe; [55] or even
quasi one dimensional organic conductor (TMTSF),ClO, [56], systems in the proximity
of a quantum critical point (CeNisGey [57], Sr3Ru20 [58], CeColns [59]), and in a quasi-

two-dimensional system displaying weak-localization (pregraphitic carbon) [60].

INote that if the carriers had a charge of say a X e where a is a real number, then the WF law would

become %% = %%7 = Lo/a?.
2This is always true at T = 0 such that the WF law should always hold at T = 0.
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The violation of the WF law

It is also well known that the WF law is violated in a number of instances. At finite
temperatures, the scattering becomes inelastic and the conditions of applicability of the
WF law are no longer satisfied (condition 4). The normalized Lorenz number L/Ly
becomes less than one as is shown in Fig. 2.2 for several levels of disorder for a simple
metal [41]. It is well understood with the fact that a heat current can be degraded
more easily than an electrical current when the scattering events involve, for example,
small wavelength phonons (see [41] for a good discussion). The electrical current is
degraded preferentially by forward scattering events while the thermal current has no
such limitations. This also explains why the WF law is recovered at temperatures near
©p in metals: phonons with any wavelength can degrade the electrical current and the

scattering rate is the same for ¢ and k.

In fact, the deviation of the Lorenz number from Lo at finite temperature may yield
information about the scattering mechanism at play. This was studied in CeNi;Ge, [57] in
the context of spin-fluctuation scattering. Current work is interested in these deviations
near a quantum critical point to better understand the role of scattering due to quantum
fluctuations [58, 59].

The WF law is also seen to be violated when the thermal conductivity has contribu-
tions from other carriers than electrons. This is the case, for example, in dirty metals
where the phononic contribution may be large. It has also been reported recently in
systems where spin excitations contribute to the thermal conductivity [37, 38, 39]. This

violates condition 1 for the validity of the WF law.

A superconductor is the most extreme violator of the WF law. There, the electrical
thermal conductivity is zero while the conductivity is infinite. Condition 1 is again
responsible as the carriers of charge are Cooper pairs while the carriers of heat are
thermally excited quasiparticles.

These violations are well known and well understood in terms of the conditions of
applicability of the WF law. However, a new and unexpected violation of the WF law
in the normal state of a cuprate superconductor at T — 0 was reported [46]. Since it
is for T — 0, it does not stem from an inelastic scattering mechanism. Moreover, the
phononic contribution was successfully subtracted and no magnetic carriers are expected
to participate in the conduction of heat as there is no magnetic ordering in this material.

This lead the authors to turn to conditions 1, 2 and 3 in a novel way: the carriers
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are known to be electronic in nature but are they indeed fermions which carry charge
e? Instead, this result has been seen as a possible indication of spin-charge separation
where the electrons may be splitting into a neutral spin carrying excitation and a charged
boson with spin zero. This result along with other reports in cuprate superconductors
will be the central theme of Chapter 7. The attempts at understanding this behavior

theoretically will be reviewed there.

2.3 Phonon thermal conductivity

Phonons dominate the thermal conductivity of electrical insulators but may be important
in dirty metals or in superconductors. In the same way as done for electrons, one can

use the relaxation-time approximation and obtain:

1 1
Kph = -—C'Uph2’l' = —C’Uphl (213)
3 3
Where C is the heat capacity, v, is the phonon velocity, 7 is the scattering lifetime and

[ is the mean free path. The temperature dependence of &y, is shown in Table 2.2.

2.3.1 Theoretical treatment

Let us start by deriving the heat capacity of phonons in the Debye theory. That is, we
will consider only the acoustic branches which are the low energy ones. They are also
the ones which will carry heat. Assuming a harmonic potential between the ions of a

crystal, we obtain a linear dispersion relation:
E = hw = hc,|K| (2.14)

where w is the frequency, ¢, is the velocity of branch ”s” and |k| is the momentum
wavevector. The heat capacity is given by:

au

== % > Ef(E) (2.15)
s,k

where U is the internal energy, f(F) is the distribution function and the sum is taken
over the three phonon modes or branches (two are transverse and one is longitudinal).

Since phonons obey Bose statistics, their distribution function is f(E) = m'
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Taking the integral over momentum space (assuming that it is continuous rather that

discrete), and using equation 2.14, we obtain:

_d dk hw, (k) _d dk hes(k)k
¢= dT 2/ (27)3 ehws(k)/ksT _ 1 T dT zs: /au space (277)3 ehes (k/ksT _ | (2.16)

We now define the Debye wave-vector kp. The integral will be done over a sphere of

radius kp instead of over the first Brillouin zone. This sphere is made to contain as many
wavectors as there are ions in the crystal such that n = k3,/6n? [7]. Also, an associated

Debye temperature and Debye frequency are defined as
kB@D = th = hcs|kD| (217)

We also assume that the three phonon branches and participate equally and that the
spectrum is isotropic to have equation 2.16 become:

3(h'vph)2 kp dk k4ehvphk/ka
= 27r2kBT2 \/0' (ehvphk/kBT _ 1)2

(2.18)

where vy, replaces ¢, and is the phonon velocity. Using the substitution z = hesk/ kT,

we obtain:

_ 3kg (kBT 3 /GD/T dz z'e®
-~ 2nm? 0 (e* —1)?
Using the fact that the integral can be done up to infinity rather than simply up to ©p/T

2.19
Fm (2.19)

(as long as T' < Op in which case the error is exponentially small), we find that the heat

capacity can be written in either of the following ways:

1274 T o2 kgT

—_— 3 —_
E an(@D) ks(

C= 3

)3 (2.20)

hvph
Let us now turn to the thermal conductivity of phonons at low temperatures. The
treatment is similar and one arrives, following Thatcher and Callaway [61, 62] to the

relation:

_ ks lﬂ_B_T e

3 ©p/T
K = ﬁ( 7 ) ’Uph/o dz T(w,T)m (221)

which is very reminiscent of equation 2.19 keeping in mind the simple kinetic theory result
K= %C’v27'. Here, 7(w, T') is the frequency (or momentum) and temperature dependent
scattering rate. Eq. 2.21 is shown to remind the reader that the frequency dependence
of the scattering rate will have an effect on the thermal conductivity: changing variables
from 7(w, T) to 7(z,T) will lead to an additional temperature dependence. It is however
usually sufficient to treat the lattice thermal conductivity with the simple kinetic theory

used in equation 2.13.
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Phonon scatterers 7! C K
Boundaries T° T3 T3
Electrons ~w T3 T?
=T
Phonons (T' < Op) T3 T3exp(©p/bT)

Phonons (T>©p) T T° T lorT™*®

Table 2.2: Phonons are scattered via various mechanisms. This table shows the temperature
dependence of the scattering rate 771, the heat capacity C and the thermal conductivity &
associated with several of these mechanisms. © p is the Debye temperature of the insulator. x

is between 1 and 2.

2.3.2 Scattering mechanisms

The main sources of scattering of phonons are the boundaries at low temperature, the
electrons (except in an insulator), other phonons and various types of defects. We will
review the temperature dependence that they imply (see Table 2.2). The velocity of the
phonons is assumed to be temperature independent. Note that the frequency dependence
of the scattering rate 7~! and the resulting ”additional” temperature dependence is

shown. This is a direct result of equation 2.21 and the necessary change of variable.

Boundaries If there are no electrons to scatter the phonons at low temperatures, their
mean free path becomes very long and the only form of scattering becomes the crystal
boundaries. For a single crystal, the mean free path becomes roughly the mean dimension
of the cross-section. For example, it is given by the diameter for a sample with a circular
cross-section or, for a rectangular cross-section, d = 2\/@ where w is the width and £ is
the thickness. In this case, the mean free path and therefore also the lifetime is constant
as a function of temperature. Assuming that the scattering of the phonons from the
crystal boundaries is diffuse (i.e. that it is frequency independent), the temperature
dependence of k comes solely from that of the heat capacity: C ~ T3 80 kpnh—p ~ T5.

More quantitatively, we obtain

2 14
n/T3=27r kz d

— 4.06 x 103 d [em]

— WK™*em™ 2.22
15 B3 < vy >2? < vpp, > [cm/s)? fm em™] (2:22)

directly from equations 2.13 and 2.20. Here, d is the mean free path (or the sample

dimension) and < v, > is the average phonon velocity.
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Thermal conductivity

Boundaries Defects Umklapp processes
Temperature

Figure 2.3: This figure shows the thermal conductivity of an electrical insulator (after [41]).
The transport is only phononic and the dominant scattering mechanisms are boundaries at low
T, defects at intermediate T and phonons at high T. A cleaner or larger sample will lead to a

larger phonon peak as shown by the upper curve.

This relation has been experimentally verified in insulators up to temperatures of the
order of 5-10 K (see, for example [61]). Note that the samples studied by Thatcher had
their surfaces sandblasted to ensure that the scattering of the phonons was diffuse. If this
is not the case and the scattering is specular (frequency dependent), the thermal con-
ductivity acquires a modified temperature dependence which is reported to vary between
k o< T* with 2.1 < o < 3 |61, 63].

In our samples, the surfaces are usually polished or are naturally smooth. This gives
rise to such an altered temperature dependence. However, assuming the T3 dependence
is usually a good approximation. Also, typical values for our crystals yield < vpn >=
5 x 10° cm/s and d ~ 0.05 cm to give kpp—p/T° ~ 8 mW K™* cm™.

Electrons When the phonons are limited by electrons, the scattering rate is propor-
tional to the frequency of the phonons. The scattering rate then brings an extra linear
temperature dependence. Again, the heat capacity is cubic in T. This means that the

thermal conductivity goes as kpn_. ~ T2. Its magnitude was found to depend on the
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residual resistivity po in alloys [64].
This type of scattering can be very important in the vortex state of a superconductor.
Indeed, vortices are electronic in nature and will scatter phonons strongly upon entering

a sample (i.e. above H).

Phonons Phonon-phonon scattering that leads to thermal resistance will do so through
Umbklapp processes. At low temperatures very few phonons have sufficiently large energies
to take parf in Umklapp processes. One gets k ~ T3e®p/¥T) with b ~ 1. However, at
temperatures above the Debye temperature, one obtains k ~ T~!. A more precise

treatment leads to k ~ T~% where x is between 1 and 2.

Defects Different types of defects will lead to different behavior of the associated scat-
tering rate. For example, point defects (those which extend over a distance much smaller
than the phonon wavelength) will lead to x oc T while dislocations will contribute a
”core” term (k o< T°) and a ”strain field” term (k o< T?). For a complete discussion, see

[41].

The thermal conductivity of an insulator is presented in Fig. 2.3. The dominant scat-
tering process for each temperature range is mentioned. Note that in a metal, electrons
strongly suppress the phononic conductivity.

It is useful to point out here that we are actually not interested in the physics of
phonons but rather that of electrons. Phonons only act to block our view of electrons and
we need to understand them in order to extract the electronic thermal conductivity. Our
approach for this is to do our measurements at the very lowest temperatures for two main
reasons: 1/ The magnitude of ,, decreases faster (~ T°) than that of electrons (~ T,
and 2/ kpp, is dominated by boundary scattering and is easily understood quantitatively,

an additional test of our analysis.

2.4 Thermal conductivity in superconductors

2.4.1 Thermal conductivity of an s-wave superconductor

Upon cooling below the transition temperature of a superconductor, the electronic spec-

trum becomes gapped in the way described in Chapter 1. Many properties of an s-wave
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superconductor are dictated by this superconducting gap. More precisely, it is the co-
herence factors which determine these properties.

It is insightful to view these properties in terms of the two fluid picture. The super-
conducting fluid is formed by the Cooper pairs. It carries charge perfectly but cannot
carry entropy. As such, it does not contribute to the thermal conductivity. The normal
fluid is formed by the excitations above the superconducting gap, i.e. the broken Cooper
pairs. These are the excitations which will contribute to the thermal conductivity. Below
T.,, the density of the normal fluid will decrease and will be exponentially suppressed for
temperatures much lower than T, and the electronic thermal conductivity will be nil.

Bardeen, Rickaysen and Tewordt (BRT) [9] calculated the thermal conductivity ex-
pected for an s-wave superconductor (see Fig. 2.4). They find that the ratio of the
thermal conductivity in the superconducting and normal states (k,/n) should be a uni-
versal function of T'/T, if the only scattering mechanism is elastic. Their results fit very
well in the case of Aluminium as can be seen in Fig. 2.4b. There, one sees that for
values of the residual resistivity (i.e the normal state thermal conductivity - cf WF law)
differing by a factor of over 100 has no effect on x, /kn. The main features characteristic
of this theory are the following: 1/ the thermal conductivity does not change slope at T,
and 2/ ke/kn falls below the 1% value around T./5 (see Fig. 2.4a).

In general though, the thermal conductivity is not as simple to understand. In addi-
tion to the BRT result, several other factors must be kept in mind: 1/ the contribution
from phononic thermal conductivity, 2/ the different scattering mechanisms for both
electronic and phononic contributions can be diverse, 3/ the scattering mechanisms can
be modified very strongly by the effect of superconductivity. Cooper pairs can indeed
not participate in any scattering event (this is the cause of the nil resistivity). Their
increasing density at the expense of quasiparticles decreases the scattering of both the
remaining normal fluid electrons and phonons. The first two statements are not proper
to superconductors but apply to any material as was amply described in the previous
sections. However, the third one is.

Concretely, the usual features that are observed in an s-wave superconductor can be

seen in Fig. 2.5. These are explained in order of decreasing temperature starting at T¢:

e A change of slope at T, (not seen clearly in Fig. 2.5). This may be due to several

processes.

e The BRT decrease of the electronic thermal conductivity.
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Figure 2.4: (a) The electrical thermal conductivity for an s-wave superconductor as calculated
by BRT [9]. Note that s/ky reaches the 1% level at T;/5. (b) The thermal conductivity of
aluminium (Al) of different purities [10]. /Ky is independent of purity and the BRT prediction
fits the data very well.

e A phononic peak around T,/5: the phononic thermal conductivity increases due to

the decrease of electronic scattering.

e A decrease of the phononic thermal conductivity as the phonons start being scat-

tered by the crystal boundaries.

e A purely cubic temperature dependence showing that the phonons are in the limit

where the only scattering mechanism is via the boundaries of the crystal.

In summary, the superconducting gap of an s-wave superconductor will lead to a
nil electronic thermal conductivity for T <« T,. Another way to say this is that the

observation of a k/T = 0 at T — 0 is a good indication of a fully gapped Fermi surface.

2.4.2 Thermal conductivity in the vortex state of an s-wave

superconductor

A key feature which defines thermal conductivity as an experimental probe is that it is

only sensitive to extended or delocalized carriers. This is in contrast to heat capacity
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Figure 2.5: (a) The Thermal conductivity of Nb in the normal (triangles) and superconducting
(circles) state [65]. The solid lines through the experimental data are guides to the eye. The
lowest curve gives the result expected from the BRT theory. At T;/5, a phonon peak develops.
(b) The thermal conductivity at very low temperatures of Nb. k, is fully phononic and reaches
the asymptotic regime of k£ oc T when the sample is sandblasted (circles) [66]. When the same
sample is polished (diamonds and crosses), k shows a power law behavior higher lower than T3,

probably due to specular scattering on the crystal boundaries.

measurements which probes all excitations, be they extended or localized. It therefore
offers a unique tool to probe the vortex state of superconductors. Indeed, in the mixed
state of a superconductor, the electronic excitations are thought to be localized within

the vortex cores [17] as described in Chapter 1.

Typical thermal conductivity in H

Typical thermal conductivity data as a function of field for a clean sample (i.e. for
&/l < 1) is shown in Fig. 2.6. The characteristic features are seen for the data at

T = 5.5 K. They are 1/ a sharp decrease at H,, 2/ a very rapid increase near H,



34 CHAPTER 2. REVIEW OF THERMAL CONDUCTIVITY

Figure 2.6: The thermal conductivity as a function of magnetic field for Nb at 7 = 1.98 K (~
T./5) and T = 5.5 K [20]. For the lowest temperature, one sees that the phononic contribution
is far smaller than the electronic one. We can thus assume that the change in « is entirely

electronic. The slope at H¢ is nearly infinite.

with almost infinite slope until the normal state is reached. The first is due to a large
increase in the scattering of phonons by the vortex cores. The phononic contribution
thus decreases very quickly as vortices penetrate the sample. It is worth remembering
that this scattering is electronic in nature. As for the second, the electronic contribution
which is nil below T,./5 in H = 0 (see Fig. 2.4 [9]) must rise to its normal state value

which is given by the Wiedemann-Franz law. The electronic behavior is discussed below.

Tt must be stressed that the value of x in H = 0 is mostly (if not completely) phononic
whereas the value in the normal state is purely electronic (for good metals) and given by
the Wiedemann-Franz law. Thus comparing the relative size of the two has no physical
meaning. It also reminds us that the task of looking for the low field behavior of the
electronic thermal conductivity is a difficult one as phonons effectively hide the view. To
do so, one can try to minimize the phononic contribution (with a sample with a short
mean cross-section (see eq. 2.22) and go to low temperatures since Kpp T3 and k. x T

This is one of the tasks that we have done with the work comprised in this thesis.
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Kph in the vortex state

At low temperature, when the so-called ballistic regime is reached, the phononic ther-
mal conductivity has a cubic temperature dependence and its mean free path is limited
by the boundaries of the sample. However, when vortices enter the sample, they may
constitute an additional source of scattering. In this case, one would expect the tempera-
ture dependence of the phononic thermal conductivity to have the following temperature

dependence:

1/Kph = 1/Kboundary + 1/Fvortices = 1 /aT® + 1/bT? (2.23)

where the aT? term refers to the boundary scattering and bT? refers to the scattering
by vortices (it has a 7% dependence since it is an electronic scattering mechanism 1).
Furthermore, one may expect the prefactor b to vary inversely as the density of vortices,
namely, as 1/H. Indeed, increasing the scattering will reduce the thermal conductivity.
This has been seen for the first time in V3Si and is shown in Fig. 4.9.

What’s more, as is seen in Fig. 2.6, k,n decreases sharply as soon as vortices enter
the sample. This turns out to be a useful way to indirectly measure the lower critical
field H, (see Chapter 4).

Having described the phononic thermal conductivity in the vortex state, let us now

turn to our main interest, namely, the electronic thermal conductivity.

k. in the vortex state

The best known property of electronic states excited by introducing vortices in a super-
conductor is that they are bound to these vortex cores. It would then seem that there
would be no electronic contribution to the thermal conductivity since it is only sensitive
to delocalized states. This would not be entirely correct. One needs to remember that
the wave function of the bound states extend outside the vortex cores in an exponential
way e~ %% where ¢ is the coherence length (and 2¢ is the diameter of the vortex core)
and d = \/§ is the intervortex spacing. Thus, as soon as there is more than one vortex
in a sample, these wave functions will overlap and lead to a finite thermal conductivity

which will scale with e—#2 = e~*VHa2/H where o is a constant of order 1 2. This is

1Note that we are not aware of any formal theoretical formulation of the scattering of phonons by
superconducting vortices. For this, although the temperature dependence will indeed be that of phonons
scattered by electrons (~ T2), little a-priori information can be known about the prefactor b.

2Note that d/2¢ = 3/ 2 Hez ~1.95 B2 using Eq. 1.10 and 1.13.
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indeed observed in Nb [20] and in V3Si (see Chapter 4) at low fields.

However, to better understand the physical mechanism at play, it is useful to think
of the thermal conductivity in the semi-classical way where x = %C’vl = %C'vzfr where C
is the specific heat, v is the velocity of the carriers, [ is the mean free path and 7 is the
scattering lifetime. Within this line of thought, one should realize that, strictly speaking,
the bound states are always extended as long as there is more than one vortex in the
sample. The overlap of their wave function creates a band structure which will change
as a function of the intervortex spacing (i.e. of magnetic field) as has been calculated
in [67, 68]. When vortices are far apart, the bands are extremely flat and give rise to
extremely heavy excitations. In other words, their group velocity is very small. It will
then increase as the magnetic field is increased itself. At the same time, the density of
state (and C) will increase. We can further assume that the mean free path is independent
of field. This should be a good approximation at low temperature when [ is limited by
impurity scattering. In this case, we would use the first relation x = %Cvl . On the other
hand, it is more conventional to think of the change of a transport property in terms of
a changing scattering rate rather than a changing group velocity. We can then choose to
fix the velocity as vp, the usual velocity for electronic excitation, and talk about a field

dependent scattering rate 7-!. Then we can use the more common relation x = %Cv27'.

Unfortunately, these arguments are not rigorous. In fact, it is very difficult to treat
this problem theoretically for low magnetic field value (or small vortex density). Up
to recently, theoretical work describing the thermal conductivity in the vortex state
was restricted to fields very near H for clean superconductors [69, 70]. In this case,
Kks/ky was predicted to have a nearly infinite slope at H.y and vary as ks/ky — 1 «
(1—(H/Hy))%. This is indeed what is observed experimentally [20]. Recently, efforts were
made using a quasi-classical formalism to extend the range of validity of the theory for
thermal conductivity in the vortex state [71]. They find that the effective scattering rate
is largely dependent on the purity level of the sample &y/!. Dukan and TeSanovi¢ [72] have
also done some analytical work and numerical calculations of the vortex state thermal

conductivity which will be discussed in relation to our data on V3Si (see Chapter 4).

In the dirty limit however (& /I > 1), the thermal conductivity is predicted to vary
linearly with field near H., [73] as has been verified experimentally [20]. In light of these
extremely different behaviors, it is crucial to know the in which regime (clean or dirty) a

sample is when analyzing its thermal conductivity data in through the vortex state.
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Figure 2.7: The effect of impurities on the density of states of a d-wave superconductor with
unitary (a) and Born (b) scattering (after [75]). For unitary scattering, the DOS at zero energy

increases as impurities are added. For Born scattering, the linear DOS slightly changes slope.

2.4.3 Thermal conductivity in unconventional superconductors

Thermal conductivity has been a terribly useful probe of unconventional superconduc-
tivity throughout the years. Much experimental and theoretical work has been done on
the subject (see a review by Hussey [74] and references therein). In light of this, this
section will not aim at giving a thorough review but rather, go over the main results. In

addition, it will only focus on T = 0 results which will be important for this thesis.

As we want to understand the behavior of the thermal conductivity in a superconduc-
tor with a gap other than s-wave, we must realize that specific details will depend on the
type of gap (for example, a gap with line or point nodes, a highly anisotropic gap, etc.).
We will discuss here the case of a d-wave gap in a 2D system which is appropriate to
describe high temperature superconductors. This will both give a good understanding of
the generic features associated with a gap with line nodes and show that, in this case at
least, a quantitatively correct picture emerges. The reader is directed to a recent review
of the topic by N. Hussey [74] for a more complete treatment both on the theoretical and

experimental fronts.
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Density of states

Let us first discuss the density of states (DOS) for a superconductor with a d-wave
gap. This will lead us naturally to the physical properties that are of interest to us.
In contrast to the DOS of an s-wave superconductor where Ny(E) = 0 for energies
below the gap maximum A, (see Fig. 1.2b and Eq. 1.6), the DOS N,(E) for a clean
d-wave superconductor is linear with respect to energy at low energy, diverges at the
superconducting gap (the SC coherence peak) and recovers the normal state value at
high energy as seen in Fig. 2.7. However, the addition of non-magnetic impurities has
a pair-breaking effect and creates a finite density of state at zero energy as also seen in
Fig. 2.7a [75]. This is only true for unitary scattering (”scattering” here refers to the
pair breaking mechanism). Unitary scattering is the extreme case of maximal scattering
(i.e. introduces a 7/2 phase shift). In the opposite limit of weak scattering, the Born
limit, the DOS is not changed significantly: its slope with respect to energy is changed
slightly and the DOS stays nil at zero energy (see Fig. 2.7b) [75].

There is good reason to believe that the scattering is unitary for high T, cuprates
although the possibility of a weaker scattering (one which is between the unitary and
Born limits) is still being entertained. It should be reminded that adding non-magnetic
impurities in an s-wave superconductor has no effect on the DOS but that adding mag-
netic impurities can create a finite DOS at zero energy {76]. This behavior was referred

to as gapless superconductivity.

Let us now understand this effect more quantitatively. The density of states of a
d-wave superconductor will depend on the density of impurities it contains. For this, we
will use the normal state scattering rate I' = 1/27y as the parameter which will define the
DOS. Fig. 2.7 shows N,(E)/Ny(0) for different values of hI'/kgT, where Ag = 2.14 kgT,
the weak-coupling value for the gap maximum for a d-wave gap. As the density of
impurities increases, two things happen: 1/ the DOS is finite and constant up to higher
energies and 2/ the DOS at zero energy N,(0)/Nn(0) increases.

We then distinguish a new energy scale separating the two behaviors: N,(E)/Nx(0) =
constant and N,(E)/Nx(0) < E. We introduce the parameter 7 as the energy at which
this occurs. This parameter is used to define two ranges of temperature relevant in
experimental situations: the dirty limit for T < v and the clean limit for v < T < A,.
Note that v ~ 0.614/A,T [77].

As for the density of state at low energy, it reaches a value of N,(0)/Nx(0) =
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%ln(Ao /) ~ 7?23'5 and depends on the level of disorder !. A natural question arises:
can one obtain a DOS in the superconducting state which surpasses the normal state
DOS simply by adding a large quantity of impurities? Naturally, the answer is no:
adding impurities also has the effect of destroying superconductivity in an unconven-
tional superconductor by first reducing T, as I is increased and by totally destroying the
superconductivity for Al'g.s; = 0.88 kT, [78].

Although the specific formulation will vary depending on the gap topology, these
results hold for any gap with lines of nodes. This is in stark contrast with an anisotropic
gap where the nodes are accidental and not topological. Indeed, in this case, adding
non-magnetic impurities will have the effect of making the gap more isotropic [79]. In

other words, instead of increasing the DOS at low energies, it will decrease it.

Physical properties and &

Before moving on to calculating physical properties, let us formulate the problem with
the useful terminology introduced by Lee [80]. The latter parameterizes the excitation
spectrum of the low energy quasiparticles. In momentum space, these will only be im-
portant at the gap nodes where the density of states is finite. This also allows to linearize
the gap spectrum around the node. There, the Fermi velocity is defined in the usual way

and a second velocity emerges as given by the slope of the gap at the node:

13) ~

vp = % = vpky (2.24)
OA ~

Vg = 6_1: = ’1)2k2 (225)

where El is perpendicular to the Fermi surface and Ez is tangential to it. This forms a

so-called Dirac cone which has an energy dispersion relation of the form:

Ey, = /& + A} = hy/vEk? + v3k2 (2.26)

What’s more, v can be simply related to the slope of the gap at the node by S =
dA/dk = hkpve. For a true d-wave gap, this slope is given by S = Ag/2. This allows us
to reformulate the DOS of states in the dirty limit (for E < «y) the following way:

2NN(O)y _ 4 v
AV m2h2 vpy

Ny(E) = (2.27)

1The logarithm of Ag /7 is left out as it is a small correction.
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using the fact that Ny(0) = %, hkp = vr/m and Ay = hikpve/2. From this, we can
sketch a derivation of the heat capacity and the thermal conductivity which will capture
the essential consequences of having a gap with line nodes. It also shows a natural way
to obtain power law dependences for many physical properties (a distinctive signature of
an unconventional gap) instead of activated behavior for s-wave superconductors. Let us

first derive the energy of the ground state for such a density of states:

E =FEy+ / dE (DOS) (Distribution function) (Energy)
0
= Ey +/ dE N4(E) f(E) E
0

kpT 4
fy
= E +/ dE E
0 0 7T2h2 VFU2
2

Y 2
2 (kgT
vm( 5T)

(2.28)

as long as T < v and with f(E) being the Fermi distribution function (approximated to
be a step function). The heat capacity is easily calculated to be:
dE 4k} v T

dT - 7r2h2 VEpUy

which depends on the level of purity . This result is natural since the DOS increases

C =

(2.29)

with the level of impurities. The thermal conductivity is obtained as ko = %CU%T where
the factor of 1/2 is due to the 2D nature of the transport and the lifetime is given by
7 = h/v. This leads to

Ko 2 k% vp

which has the property of being independent of the level of purity. This is of course
counter-intuitive but is understood naturally: the effect of the increasing DOS and the
decreasing scattering lifetime with the increasing density of impurity ezactly cancel one
another. For this, it is said that the thermal conductivity is universal with respect to
impurity concentration [80, 81]. This was verified experimentally in both YBCO and
BSCCO at optimal doping [82, 83, 84] (see Fig. 2.8a). What’s more, it is only dependent
on the ratio vp/ve. This derivation is simplistic and does not get the correct prefactors

(it misses them by 72/6). The proper calculation gives

Ko sz n vr Vo

T 3k d ‘v W)

where % is the average spacing between CuO, planes (n is the number of planes per

(2.31)

unit cell and d is the ¢ axis lattice constant) [81, 85]. This result was also shown to
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Figure 2.8: (a) The residual linear term roo/T as a function of disorder (I') for YBCO showing
universal conductivity in a d-wave superconductor [82]. The inset shows the values of ko0/T
corrected for the finite values of T as shown in (b). (b) The correction to the universal con-
ductivity with disorder where Al'; = 0.88 kg1 (after [86]). The inset shows a schematic of the

same graph with the normal state thermal conductivity.

be insensitive to vertex and Fermi-liquid corrections [85] which makes it a unique probe
of the quasiparticle parameter vp/v,. But remembering that adding a large amount
of impurities will actually destroy the superconductivity, we assume that the thermal
conductivity will also deviate from this universal constant at large values of I'. This is
indeed the case as has been calculated by Maki [86] as shown in Fig. 2.8b.

Many other properties such as the charge conductivity o(T), the penetration depth
A2(0)/X2(T) and the heat capacity can be calculated in this way and are also dependent
of the parameters vy and vs. In fact, these parameters can be measured directly by angle
resolved photoemission spectroscopy [87]. A coherent quantitative picture has emerged

in the high T, cuprates [88, 89] giving credit to this formalism.

Summary

Let us now review what we have learned about the thermal conductivity of a supercon-

ductor with lines of nodes:

e The DOS is zero at E = 0 but has a power law behavior (linear for a d-wave gap)
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below the gap.

o At low energies, the density of states will become finite as non-magnetic impurities
are introduced (in the Unitary scattering limit) and will scale with the amount of

impurities I'.
e The density of states will then be constant up to an energy 7.

e This is in stark contrast to an anisotropic s-wave gap. There, adding non-magnetic
impurities will make the gap more isotropic and effectively reduce the density of

low energy quasiparticle states.

e The thermal conductivity is universal due to the cancellation of the increasing DOS

and the decreasing scattering lifetime as one increases the level of disorder.

e In high T}, cuprates, a qualitatively and quantitatively correct picture has emerged.
However, the quantitative formulation will be different depending on the gap topol-

ogy (d-wave or other) and the dimensionality of the system (2D or 3D).

In summary, a residual linear thermal conductivity will be observed for an unconven-
tional superconductor with lines of nodes in the gap. xgo/T is also universal with respect
to the level of disorder. This is in stark contrast with an s-wave superconductor where
koo/T = 0 and with a superconductor with accidental nodes. There, impurities will make

the gap more isotropic and yield no universal thermal conductivity.

2.4.4 Thermal conductivity in the vortex state of unconven-

tional superconductors

It is a central theme of this thesis to explore the vortex state of several types of unconven-
tional superconductors. This section can therefore not serve as a review of the findings
that will be discussed in the following chapters. Instead, we will introduce the main
concepts that will be useful in our interpretation of new behavior. It is most instructive
to see which energy scales may be important in the mixed state of superconductors. The
most common one is the so-called Doppler shift energy introduced by Volovik in 1993
[90] but we will also look at the Zeeman energy which has not been considered very often

in recent theoretical treatments.
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Before moving to our program, it is worth noting that unlike the BRT thermal con-
ductivity for s-wave superconductors or the universal  in superconductors with lines of
nodes, the field dependence of x depends greatly on the nature of the superconductivity,
the level of disorder (even for a simple d-wave gap) or more generally on the regime of
magnetic field in which one is [91]. This is part of the richness of this technique as it
may unveil many new phenomena. Indeed, it is fair to say that our work on borocarbides
[92] has fuelled many other studies of x(H) in unconventional superconductors such as
ruthenates (SroRuOs [54, 93, 94]), organic superconductors (A\-(BETS).GaCly [95], -
(BEDT-TTF);Cu(NCS); [96]), heavy Fermions systems (CeColns [97], PrOs,Sbi, [98]),
and multi-band superconductors (MgBy [99], NbSe, [55]). Before this, only few thor-
ough studies had been performed on other heavy Fermions (most notably UPt3 [100]).
Of course, high T, cuprates have been investigated but mostly in field ranges much be-
low H,, (see for example [88]). In all, much is left to discover and measurements of
x(H) will surely continue to provide invaluable insight on the superconducting state of

nonconventional superconductors.

Doppler shift energy

It was first pointed out by Volovik [90] that the quasiparticles outside the vortex cores
of d-wave superconductors will be shifted in energy by a Doppler shift. This is due to
the circulating flow of electrons around a vortex core which leads to an energy spectrum

modified from that obtained in Eq. 2.26:
E.(H) = Ex —vs.k (2.32)

where v, is the superfluid velocity. Since the spectrum is shifted down, the energy gap
seems smaller to exceed in an s-wave superconductor and more states are populated at
the nodes of a d-wave superconductor. The superfluid velocity decreases as v, x 1/7
away from the vortex core. To obtain the average energy shift, we must integrate over
the unit cell of the vortex core such that Epy o ( fod drir=1)/( fod dr?) « 1/d x vH
where d < 1/v/H is the intervortex distance. A more detailed derivation leads to By =
a(H/H»)2Ay where a is a vortex lattice geometrical constant close to 1 and Ay is the
gap maximum.

This new energy scale will lead directly to an increase in the density of states and
subsequently in the heat capacity with a V' H dependence. Such a behavior was indeed
observed in YBCO [101, 89] and in LSCO [102] (see [74] for a more complete review). The
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thermal conductivity is naively expected to follow the same behavior but is in fact found
to have a somewhat more complicated form. In a d-wave superconductor for example,
Kiibert and Hirschfeld have found that for a magnetic field applied parallel to the c-axis,

the thermal conductivity will have the following form: ”(:‘:;?f ) = TR j’:_sinh_l p

p =76 v/Eg = 1/:17%%—;{ [91] in the dirty limit (for Eg < 7). This was verified
experimentally in optimally doped YBCO [88].

where

Zeeman Energy

The Zeeman energy is linear in field and has the form E; = ugH where up is the
Bohr magneton (Ez ~ 1 K at H = 1 T). It has effect of breaking Cooper pairs as the
magnetic field will polarize the spin up and spin down electrons in opposite directions.
This energy is usually associated to the destruction of superconductivity in a magnetic
field. However, it was shown that it has little effect on the quasiparticle spectrum in an
s-wave superconductor [103]. What’s more, it was also shown not to have a significant
effect on the density of states (or the transport properties) of d-wave superconductor
[104].

It is unfortunate that this energy scale seems to have been left behind at the expense
of its Doppler shift counter part. It may reveal to play a major role in thermodynamic

and transport properties but has not been explored much theoretically.

2.5 Conclusion

We have reviewed the behavior of the thermal conductivity in metals and insulators
with a specific interest on the Wiedemann-Franz law which will be central to Chapter 7.
The thermal conductivity of superconductors, both conventional and unconventional was
reviewed for H = 0 and in a magnetic field. This will lead us to an easier understanding

of the research that is presented in this thesis.



Chapter 3
Experimental techniques

4Me was first liquefied in 1904 by Kammerligh-Onnes at a temperature of 4.2 K. This
was the beginning of a long journey towards low temperatures. Soon after, he discovered
the phenomenon of superconductivity in mercury thanks to these low temperatures and
started another one of the great stories of physics. What better example of the new
phenomenon that can be discovered and the exciting physics that can be studied thanks
to low temperature techniques. The list is long (e.g. superfluidity in 3He, the fractional
quantum Hall effect) but what is clear is that these techniques have enabled great research
throughout the years.

For the sake of continuity, we will leave the discussion of cryogenic techniques to
Appendix A. This chapter will concentrate instead on describing the technical aspects of a
thermal conductivity measurement at cryogenic temperatures, and especially in a dilution
refrigerator. It will explain how we are able to obtain a high precision measurement of
the thermal conductivity of a material down to temperatures of 50 mK and in magnetic
fields as high as 15 T.

3.1 Thermal conductivity

A thermal conductivity measurement is a DC technique which uses a four-probe geometry
and is almost completely analogous to a DC resistivity measurement. A heat current Q
(charge current I) is applied and the resulting temperature drop AT (voltage drop AV)
is measured across the sample. The thermal and electrical conductivities are defined as

k = aQ/AT and ¢ = oI /AV where a is the geometric factor of the sample.

45



46 CHAPTER 3. EXPERIMENTAL TECHNIQUES

3.1.1 Generic thermal conductivity setup

A generic setup for the measurement of thermal conductivity is showed in Fig. 3.1.
The main components include a heating device, two thermometers to measure the heat
gradient and a reference thermometer. Indeed, a measurement of k consists mainly of a
high precision temperature measurement (to obtain a temperature difference).

The heating device can take many forms, the goal being to obtain a known amount
of heat flowing through the sample. The simplest heater is a resistive element which is in
thermal contact with the sample. Joule heating will produce an amount of heat equal to
RI2 when a DC electrical current is applied through this resistance. However, the heat
could also be applied by radiation (for example with a optical fibre) or by induction.
Both these methods are harder to implement and to control.

There are two main ways to measure the temperature gradient across the sample.
The first is to use two calibrated thermometers and to measure the temperature of each
one. The other is using a thermocouple which measures directly a temperature gradient.
The latter is an attractive and simple method but has the disadvantage of loosing sen-
sitivity below approximately 10 K. At these temperatures, it also has a nontrivial and
irreproducible magnetic field dependence. We will limit further discussion to the first
method as it is the one we have used for the work presented in this thesis.

Finally, the temperature is measured by a reference thermometer. It can also be used
to calibrate in-situ the two other thermometers (if this is the method used) while there

is no heat applied to the sample.

3.1.2 Considerations

Although the measurement of thermal conductivity is a simple one, many considerations
must be kept in mind while designing the experimental setup. These are enumerated
below in the following order: heat losses; thermometer temperature; choice of thermome-
ters and heater; vibration issues; heat capacity of the components. This will lead to a

natural explanation of the particular setups that will be described in other sections.

Heat losses

Heat losses is a crucial consideration one needs to keep in mind while measuring thermal
conductivity. This comes back to the question of knowing how much heat Q is flowing

through the sample. There are three potential sources of heat losses: via conduction,
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Heater

@ Thermal contact only

Figure 3.1: Schematic of a generic thermal conductivity setup. The main components are a
heating device to apply a heat current, two thermometers to measure the temperature difference

AT across the sample and a reference thermometer.

radiation or convection. The first will be through the measurement wires, the second,

through photons and the third, through the gas in the experimental chamber.

Conduction The applied heat stems from the heating device and will flow to the tem-
perature of the base. It can follow two parallel thermal paths as described on Fig. 3.2a.
The first is through the sample (Path 1), while the other is down the measuring wires
of the heater itself (Path 2). Two other paths also open to the heat current as it passes
through the sample: the measuring leads of the thermometers (Paths 3 and 4). These
three last paths need to have a much larger impedance (thermal resistance) than the first

one such that

Wpathl < Wpa,th27 Wpath3a WpathA (31)

where W is the thermal resistance (a more careful analysis can be found in Appendix B).
Note that one needs to be careful about knowing what these paths are to properly rule
out the possibility of heat losses.

Radiation The Planck law of radiation states that the power dissipated by a black box
is proportional to T*. It is then clear that radiation problems get more pronounced at

higher temperatures. Two parallel plates at different temperatures T; and T3 and with
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Figure 3.2: (a) The heat stems from the heater and will follow paths 1 to 4. Avoiding heat losses
is obtained by having most of the heat go through Path 1. (b) To ensure a good measurement

of the sample temperature, one needs Wy < Wp.

emissivities €; and e, and area A transfer heat from one another at the following rate:

€1€2

Qradiation = O'A(T24 - T14) (32)

where o = 5.67 x 107°W m™2 K~ is the Stephan-Boltzmann constant [105]. The emis-
sivivity has a maximum value equal to 1 for a perfect blackbody. However, the case of
radiative heat losses in a thermal conductivity setup is more subtle. To illustrate this,
consider a reference thermometer which is in a situation where it radiates a large amount
of heat to its surroundings (which is, say, at T = 4 K). The temperature measured from
it 45 the temperature at which it is. Then, any part of the measurement setup which is
in good thermal contact with this thermometer, although they are also radiating a lot
of heat, is at this same temperature (as long as the amount of heat they are radiating
is similar to that of the reference thermometer). For a thermal conductivity setup, each
component will radiate a certain amount of heat while no heat current is applied. It will
then radiate an additional amount of heat when a heat current is applied and that some
parts are at a higher temperature (for example, the heater will be the part which will be
at the highest temperature). It is this additional amount of heat which may contribute

to heat losses if it is of the same order as the heat current applied to the sample. It is
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given by:

€1€2

_— 3.3
€1 + €3 — €1€9 ( )

. . . n 4
Qrad loss = Qrad Q on Qrad Q off = UA(Theater on Theater off)

and is independent (to first order) of the temperature of the surroundings (this is why a
radiation shield does not help in reducing the heat loss problem). However, there exists
some elaborate schemes designed to reduce these types of heat losses [106].

As the discussion above describes, the losses due to radiation will come from all parts
of the setup (including the sample) which has a higher temperature when a heat current
is applied. The main component will be the heater which is at the highest temperature

but the sample and the thermometers will also contribute.

Convection Some heat may be lost through the surrounding gas in the IVC. For this rea-
son, the experimental setup must be in a good vacuum which is done both by evacuating
the IVC before an experiment but also by the effect of cryopumping.

The heat carried by helium gas (the one most susceptible to live in our cryostats:

below the freezing point of most gases) is given by:
Qeonvection = 0.02 a A [em®] P [mbar] AT [K] (3.4)

for parallel plates of area A [105]. a is the accommodation coefficient of the gas on the
walls of the IVC (how likely they are to transfer heat to it) which is at most 1 and can
be as low as 0.025 for clean surfaces. This equation holds true if the mean free path of
the gas molecules is larger than the distance between the plates which is the case at low
pressures and the small volume of an IVC.

Note that the same discussion as that of the heat loss through radiation can be held
and the heat loss will consist of the difference of convective heat transfer for "heat on”
and "heat off”.

Thermometer temperature

This is an equally important but often forgotten consideration: one needs to make sure
that the thermometer is at the same temperature as the sample. Consider either path
3 or path 4 of Fig. 3.2a. A small but finite heat current will flow through this path
(since there is a temperature gradient across it). Starting at the sample itself, it then

passes through the thermometer and through the measuring wires of the thermometer



50 CHAPTER 3. EXPERIMENTAL TECHNIQUES

creating two thermal resistances in series W4 and Wg (see Fig. 3.2b). In order for the
thermometer to be at the same temperature as the sample, one needs to have W4 < Wp.
This way, the temperature gradient is mostly set up across Wg, with a negligible gradient

from the sample to the thermometer.

Choice of Thermometers

Depending on the use of the setup (temperature range, measurements in a magnetic
field), different kinds of thermometers will be most appropriate. The thermometers used
are resistive chips which have a highly temperature-dependent resistance. Typically, it
increases dramatically at low temperature. Measuring temperature reduces to a simple

resistance measurement. Here is a list of considerations for choosing them.

Sensitivity As for any measurement, one wants to obtain the largest signal to noise

ratio to maximize the sensitivity. For a temperature measurement based on resistivity,

it is tempting to think that one should choose a thermometer on the basis of a large

dR/dT, the temperature sensitivity of the thermometer. A proper analysis shows that
T dR 1 dR

the correct criteria is to maximize 355 or 527 depending on the type of noise. Let us

see why.

Considering that one measures the resistance of the thermometer with a standard
low frequency lock-in technique, the limiting noise will most likely come either from the
resolution of the measuring apparatus or from Johnson noise. In both cases, we can
consider the noise as some fixed voltage value V,,, except that the Johnson noise has
a linear T dependence. This naturally leads to a noise in the temperature of T,, =
V. dV/dT = V,/(I %&). Since the "signal” is T, the signal to noise ratio (SNR) is
then SRN o< T' I %, where I is the applied current (and forgetting about V,, which is
fixed). Note that for Johnson noise V; ox T, the signal to noise ratio will not depend on
temperature and SNR oc I %. But would this mean that simply increasing the current
I would give an arbitrarily high SNR? This is not the case in a thermal conductivity
experiment as increasing the applied current will increase the self-heating RI? of the
thermometer which is, by nature, poorly thermally anchored to the base. This additional
constraint tells us that, to obtain the same SNR (i.e. having the same I and the same

%), a thermometer with a smaller resistance R will lead to less self-heating. For this,
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1dR

TdE {5 resolution limited noise and BT for Johnson noise

RdT
Note that the noise in the experiments presented in this thesis was resolution limited.

one needs to maximize 1,

Temperature range Different thermometers will be chosen depending on the tempera-

ture that wants to be covered. For low temperatures, the choice arises from the resistance
of the thermometer. Since it is very difficult to measure reliably a resistance higher than
50 - 100 k€2 or so, the thermometer will be chosen to have a resistance which does not

surpass this value. At high temperatures, the question is simply one of sensitivity.

Low magnetic field dependence For measurements in a magnetic field, the thermome-

ters must display a low -or better yet nil- magneto-resistance. Indeed, if it is large
and positive, one may end up with a resistance which is too high to measure reliably
(higher than 50 - 100 k(2) at the lowest temperatures. This is the case, for example, with
Germanium thermometers.

What’s more, depending on the type of thermometer, its magneto-resistance may
be simple (e.g. Ruthenium oxides) or complicated (e.g. Cernox chips) to model, an
important point for the parameterization procedure (obtaining R(T, H)).

In special cases, the thermal conductivity is measured with respect to a rotating
magnetic field direction. There, the thermometers must have an isotropic magnetoresis-
tance (such is the case for Ruthenium oxides). However, such measurements were not

performed in our group.

Size The size of the thermometers must be taken into account: as is discussed below,
one wants all the components of the experimental setup to have a low heat capacity. This
helps reduce the measurement time. As such, the smallest size thermometers are usually
used.

Another aspect which arises at high temperatures is that of heat losses via radiation.

These are limited with a small surface area of the thermometers (see Eq. 3.3).

Reproducibility The reproducibility of the thermometers upon thermal cycling is also

a point to consider. In our case though, we use the safe approach and recalibrate the

1This may no longer be true when the resistance of the thermometer becomes smaller than that
of its measuring wires. Then, the heat produced by the wires may outweigh the self-heating of the
thermometer itself.



52 CHAPTER 3. EXPERIMENTAL TECHNIQUES

thermometers against a stable reference thermometer for each measurement. For tem-
peratures above 1 K, we use a Cernox CX-1050 from Lakeshore which has a maximum
drift of 25 mK per year for T' < 100 K. Below 1 K a Germanium thermometer GR-200-
A-30 from Lakeshore is used also for its high reproducibility and is routinely (every year)
recalibrated against a RuO, thermometer calibrated by Oxford (this one is not thermally

cycled often and we assume that its calibration does not drift).

Choice of heater

We will limit our discussion to the type of heaters that are most commonly used: a
resistive element in thermal contact with the sample. A current I is applied on the
heater which produces an amount of heat equal to Q = Rheater]? = VI = V2/Rpeqter via

Joule heating.

Temperature and field dependence Very often, one uses a third thermometer to act as

a heater. This implies that both the DC current and voltage across the heater must be
measured to know (). However, the ideal heater has no temperature nor magnetic field
dependence. In this case, one must only measure either the current or the voltage across

it, and this, both in temperature and in field.

Resistance value In either cases, the choice of the value of Rpegter is based mostly on the

resistance of its current carrying wires. Since these need to be highly thermally resistive
to minimize heat losses (as discussed above), they are also electrically resistive (except
in the case of superconducting wires). As such, they will also produce an amount of heat
equal to Q = RyiresI2. But this heat will not have a well defined thermal path to travel:
for the bottom half of the wires, it will be easier for the heat to go directly down the
wires whereas for the top half, the heat may want to go through the sample. In any
case, this will provide a situation where the amount of heat which crosses the sample is
ill-defined. To remedy this, we must use Rpeater > Ruires- This way the heat produced
by the wires, wherever it chooses to go, is negligible with respect to the heat applied on

the sample 1.

1Note that one can use superconducting wires in some cases. There the thermal conductivity is small
as long as we are much below T, and H.e. However, this may pose some unwanted limits on the range
of the setup.
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Figure 3.3: The noise level of the resistance of a vibrating and a non-vibrating RuQg ther-
mometer at 7=50 mK as a function of time. For the former, notice the vibration-induced heat

peaks (a decreases in R corresponds to an increase in T).

Small size The same considerations discussed for the thermometers apply to the heater.

Vibration

It is observed that thermometers are much noisier when they are vibrating. This is dis-
played on Fig. 3.3 where, at 50 mK, the measured resistance of a vibrating thermometer
is seen to have a much larger noise level than the non-vibrating one, in addition to hav-
ing typical "heat peaks” once in a while where the thermometer is heated for a short
instant. Indeed, vibrations have the effect of heating different parts of the setup 1. The
thermometers are especially susceptible to these effects as they are purposefully poorly
thermalized to the base temperature. As such, care must be taken to ensure a proper
mechanical stability for them. Note that vibration-induced heating has been well known
to low temperature physicists for a long time. Nevertheless, the physical mechanism at
play is still unclear [105]. Proposing possible mechanisms would be unfounded at this

point.

1This can be verified easily by gently knocking the cryostat. It results in a severe heating of the
thermometers. If they are mechanically stable, they will return quickly to the equilibrium temperature.
If not, they will continue vibrating (and having a large noise level) until the system is fully damped.
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Figure 3.4: Long thermalization time in high magnetic fields (a) or at high temperature (b).

This is due to thermal RC circuits within the setup. The increased heat capacity of the com-

ponents increases the characteristic relaxation time ~ vWC.



3.1. THERMAL CONDUCTIVITY L)
Heat capacity of the components

The components of the thermal conductivity setup will be heated to various temper-
atures: as the heat is applied, the heater and the thermometers will go to a higher
temperature, the sample and all the measuring wires will have a temperature gradient
across them. This will not happen instantaneously. The setup creates a set of complex
thermal resistance-capacitance ("RC”) circuits with associated thermal resistance W and
a heat capacity C. The characteristic relaxation time is simply vRC in an electrical cir-
cuit and vVWC here. This will be the time required to reach a steady state equilibrium

to then be able to perform our measurements.

Although this effect takes place in all circumstances, it is most pronounced and perva-
sive at low temperatures and high fields as seen in Fig. 3.4a. This is due to the fact that
the heat capacity of many materials increases dramatically in this regime: the nuclear
magnetic moments make for this low-temperature increase and it is enhanced in field
[107]. However, the same occurs at high temperature where the heat capacity can also

become large. This is shown in Fig. 3.4b.

3.1.3 Dilution refrigerator setup

The thermal conductivity experimental setup that was used in our group is shown
schematically in Fig. 3.5. The heater was made of two SR-4 strain gauge from BLH
Electronic Inc. (Type FSM-A6306S-500-S13C) each having a resistance R = 5000+1% (2
and wired in series (giving a resistance of 10000 2). It has a temperature and field in-
dependent resistance. The thermometers are commercial ruthenium oxide (RuO,) thick
films from Dale with nominal resistances at room temperature of 1 k2. They are sus-
pended on thin strips of Kapton® HN gauge 30 (7.5 pum thickness) polyimide film from
Dupont which are themselves supported by SP1 Vespel posts (from Dupont as well).
These are glued to the copper base with low temperature epoxy. The measurements are
made with coiled 25 ym diameter PtW wire (with 92% Pt and 8% W) from Sigmund
Cohn Corporation (the model is called 479 Pt). The thermometers are measured with a
4 probe technique whereas the current is injected into the heater with only 2 such wires.

This design will be explained in the context of the general discussion above.
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Figure 3.5: Dilution refrigerator thermal conductivity setup. The components are hanging on

thin Kapton® film to insure mechanical stability.

Heat Losses

We use 7.5 pym thin Kapton® film cut in 100 pm wide strips. It extends 1 cm on
each side of the thermometers and the heater. It is used due to its very low thermal
conductivity. The posts are made of SP1 Vespel, also chosen for to its low . They
have dimensions 0.5 x 0.5 mm and are 1 cm long. The Kapton® is glued purposefully
poorly with epoxy to the Vespel posts in order to have a good mechanical contact but as
poor a thermal contact as possible. The Vespel posts themselves are glued to the copper
mount with epoxy. The thermometers and the heater are glued -again poorly- to the
Kapton® film with GE 7031 varnish (from General Electric), making sure to use the

smallest contact area.

We use 25 um diameter PtW wire that is coiled up to make them very resistive and yet

compact in size. Each wire has a resistance of 100 2 and is independent of temperature.

The heater is carefully glued to a plate of 50-100 um thick silver foil (cut to the
dimension of the heater) with GE varnish in order to create a good thermal contact. A
silver wire (50 or 100 pm diameter) is soldered to the silver foil with non-superconducting

solder. The wire is then glued to the Ag wires attached to the sample with silver paint.

The sample itself is fixed to a copper plate which is screwed onto the experimental
mount. The thermometers are thermalized in a fashion described below. The quantitative
assessment of the heat losses can be found in Appendix B. As a note, at temperatures
below 1 K, radiative losses are not an issue. Nor are convective losses as a very good

vacuum is necessary to reach such low temperatures.
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Figure 3.6: Thermalization of the RuO, thermometers in our dilution refrigerator setup. This

ensures that the thermometer is at the same temperature as the sample.

Thermometer thermalization

The thermalization scheme used for the thermometers is showed in Fig. 3.6. It starts with
a thick 0.5 mm diameter silver wire onto which the RuQO, chip is glued with GE varnish.
A thin sheet (Gauge 50 or 100, i.e. thickness of 12.5 or 25 pm) of Kapton® film is
glued around the thick Ag wire with GE varnish. This provides an electrically insulating
but thermally conductive (due to its ”large” surface area) platform on which 100 pm
silver wire is coiled (5 or 6 turns) to serve as additional thermalization. This wire is then
soldered to the RuO; chip. A 50 or 100 um Ag wire is soldered to the thick Ag wire and
serves to connect the thermometer to the sample. This has the effect of insuring that

Wa < Wp (see Fig. 3.2b).

Choice of thermometers

The thermometers used are RuO, thick films that are commercially available at a cost of
10 CAD per 1000 pieces. They are called surface mount chips in the electronics literature
and are used in most electronic devices, ironically, for the low temperature dependence of
their resistance near room temperature. However these chips are available with nominal
resistance values at room temperature ranging from a few Ohms to several Megohms. It
turns out that the chips that have the correct temperature dependence for thermometry
below 1 K have a nominal resistivity between 1 and 3 k2 depending on the manufacturer.
The chips that were used are from Dale and had a nominal resistance of 1 k{2 at room
temperature and a resistance at 40 mK (the base temperature for our measurement)
around 7 k. Their temperature and sensitivity (—dR/dT) is showed in Fig. 3.7a and b.
They also have a small and well behaved magneto-resistance (Fig. 3.7c and d) [108].
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Choice of heater

The heaters used were commercially available strain gauges from BLH Electronic Inc.
(Model SR-4, Type FSM-A6306S-500-S13C) with a resistance R = 5000 £ 1% . Two
of them were wired in series to give a resistance of 10000 . They have no measurable
temperature or magnetic field dependence making them the perfect heaters. Also, the
value of the heater is two orders of magnitude greater than the value of the wires used
to apply a current through it (100 Q). This leads to an uncertainty in the heat that is
applied which is at most 1%.

Vibration

Fig. 3.5 shows the design made specifically to avoid vibrations. The thermometers are
suspended to the Kapton ® strips and held down with the measurement wires. The fact
that these are coiled is very helpful: they can be stretched to ensure that the thermome-
ters are held down firmly. Moreover, the cryostat is placed on a thick (2-3 cm) Aluminium
plate which decouples vibrations from the surroundings (e.g. nearby footsteps). The di-
lution refrigerator pumps are placed on a vibration isolation platform which itself is far

from the cryostat.

Heat capacity of the components

This consideration is extremely important in this temperature range, especially at very
high fields. A high heat capacity of the various components can lead to an excruciatingly
long stabilization time. As an example, Fig. 3.4 shows the difference in stabilization time
in H=0and H=13 T at 50 mK.

The main source of this long time constant associated with a thermal RC circuit is due
to the heat capacity of the measurement wires (and also their high thermal resistance).
A simple way to understand this is the following: when the heat current is applied, there
is a thermal gradient across these wires (for example Tyt — These for the wires on the hot
thermometer). When the heat current is turned off, this thermal gradient must dissipate.
It has the choice of going directly down the measuring wires or through the sample. For
the bottom half of the wire, the easiest path is through itself since the thermal resistance
across the sample must first go through the top half of the wire. However this path
already has a large thermal resistance (necessary to avoid heat leaks). If it also has a

large heat capacity, the time constant will be very large.
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The wires have been chosen to be PtW, an electrically and thermally resistive alloy
(as required for heat losses) because its heat capacity is small at low temperature and
does not increase dramatically in a magnetic field [107]. This is in contrast with other
alloys containing magnetic impurities such as manganin or constantan.

Among other considerations of this order, we have used small RuO; thermometers
(1.5 x 1.5 mm? surface area) that were thinned down to roughly 100 pm thus reducing
their heat capacity. The strain gauge used have also been chosen to be as small as possible
(3.8 x 2.6 mm? surface area and roughly 100 pm thick). The other wires that are used

are all silver since its heat capacity does not increase significantly with magnetic field.

Reference thermometer

The reference thermometer used for this setup is a Germanium resistor model GR-200A-
30 from Lakeshore which was calibrated by Oxford instruments down to 50 mK. It is
placed in a field compensated region in order to make sure that its calibration is unaltered
while the sample is placed in a large magnetic field. This is the key element which makes
it possible to obtain such a high accuracy in high magnetic fields. The thermometer is

routinely recalibrated by another calibrated RuO, thermometer.

Measurement devices

The RuO, thermometers are measured using a standard low frequency (around 10 Hz)
lock-in technique. The setup has been recently changed to use an LR-700 resistance bridge
which is multiplexed to do the measurements. This enables to measure six thermometers
(i.e. three thermal conductivity setups) at the same time. The current that is used ranges
from 1 nA at the lowest temperature to 10 nA at 1 K. As a note, the heat produced by
these thermometers is negligible with respect to the heat produced by the heater: at
50 mK, Qruoz = RI? = 7000 Q x 1 nA = 7 x 10715 Watts. This is to be compared to
the lowest current typically applied to a sample which is Q = 10000 Q x (0.5 pA)? =
2.5 x 10~® Watts.

A low noise high precision current source from Keithley applies the electrical current
to the heater. Two models were used: the 224 and the 220 which can apply currents
with a resolution of 0.5 uA and 0.5 nA respectively.

The reference thermometer is measured using a resistance bridge coupled to a tem-

perature controller. The latter is a PID controller which will not be described here. The
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stability of the base temperature is an important issue: it will determine the maximum
precision we can have on our temperature difference measurement (AT). Indeed, the
stability will set the error on the calibration (done in-situ) of our thermometers. This
may, in turn, limit our accuracy on the extracted AT. As an example, we achieve a

stability of 0.01 mK at 7' = 50 mK routinely.

3.1.4 “He refrigerator thermal conductivity setup

The thermal conductivity setup used in the 1 K refrigerator is used from the base temper-
ature of 1.5 K and up to 150 K. Fig. 3.8a shows one of the platforms used for the setup.
Three such platforms (two for the thermometers and one for the heater) are stacked one
on top of the other. They are made of fibre glass and epoxy resin (electronic circuit
board) which are shaped into a "U”. The thermometers are Cernox (CX-1030) chips
from Lakeshore. The heater is the same strain gauge used for the dilution refrigerator
setup. They are suspended by their measuring wires which are 12 ym diameter PtW
(same type as used in the dilution fridge). The setup is also used to measure resistivity
of the samples although it is not ideal for this task due to the high resistance of the PtW
wires.

The main attraction of this design is its versatility. It is compact and can be rotated
easily or even mounted on different experimental tails. All the components are suspended
by their measuring wires, which are stretched to avoid vibration issues and to enable small
and fragile samples to be mounted with no risk of harm. The main disadvantage is its
fragility. Although the 12 ym PtW wires are amazingly robust for their size, they have

a tendency to break on occasion.

Heat losses

One has to be careful in analyzing the heat losses in this setup due to the very wide range
of temperature that is covered. Indeed, as seen in Chapter 2, the thermal conductivity
of metals and of insulators is not monotonic in this temperature range (and neither is
that of the samples that are measured). Also, heat losses due to radiation can become

substantial at higher temperatures. A careful analysis is presented in Appendix B.

Measurement wires The path that may lead to heat losses is simply the PtW wire used.

This alloy has a resistivity of p ~ 30 u cm and is roughly temperature independent.
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Figure 3.8: Dipper thermal conductivity setup. (a) A subset is shown here with the wires used
for each thermometer. (b) The full setup includes three such parts: two thermometer platforms

and one for the heater.

The wires used have a length of 1 cm and a diameter of 12 pm (it is the same type
as the one used in the dilution refrigerator). There resistance is of R ~ 30 Q. At low
temperature, the thermal conductivity is given by the Wiedemann-Franz law.

This must be compared to the path the heat will take through the sample. The heater
is thermalized in the same way as in the dilution refrigerator setup. The wire used from
the heater to the sample is 50 or 100 um diameter silver. As for the thermometers, they
are thermally connected to 25 um Pt which is annealed by passing it through the flame
of a lighter. They are then easily manipulated.

Radiation The loss due to radiation is probably the main problem one needs to consider
at high temperatures. It will set the upper limit in temperature one can reach without
suffering from these losses. However, it is difficult to make a general analysis and one

must consider each sample carefully.

Convection The loss of heat through the remnant gas in the IVC may plague a mea-
surement. A good vacuum is needed to perform thermal conductivity measurements.

However, in usual circumstances, it does not pose a problem (see Appendix B).

Thermometer temperature

As displayed in Fig. 3.2, we need to ensure that the thermal path from the thermometer
to the sample is much smaller than the one from the thermometer to base temperature.

The Cernox thermometers are thermalized via silver epoxy to the Pt wires which then
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connect to the sample.

W4 of Fig. 3.2 consists of the contact on the sample, the Pt wire that connects to
the thermometer and the interface between this wire and the thermometer (Ag epoxy).
Wy consists of the measurement PtW wires. This satisfies the required condition that

Wy <« Wpg.

Choice of thermometer

The thermometers used here are Cernox chips obtained from Lakeshore (CX-1030). They
have the advantage of keeping a relatively high sensitivity up to and above room tem-
perature. However, depending on the model, the lower limit on the temperature range
where they can be used differs. The CX-1030 have a resistance of roughly 5000 £} at
T = 1.5 K. They are actually designed for use down to 7" = 0.3 K and were used to
have the possibility of using the same setup in a 3He refrigerator. Their resistivity and
sensitivity is be shown in Fig. 3.9a. The magneto-resistance is negligible at temperatures
above T = 7 K [109]. At lower temperatures, it is also relatively small (less than 10 %
below H = 16 T) but sufficiently large to require a detailed calibration [109]. This has
not yet been done but the maximum error on the thermal conductivity due to this effect
was measured to be 10% (see Fig. 3.14b).

They are also very small in size (1 X 0.75 X 0.3 mm?®) and have a high reproducibility
upon thermal cycling. Nevertheless, we recalibrate them against a reference thermometer

for each measurement.

Choice of heater

The heater is made of the same strain gauge as used in the dilution refrigerator setup
(although only one is used here) and has been selected for the same reasons: a temper-
ature and field independent resistance. It also has a high value of R = 5000 2, much
larger than the measurement wires which have a value of R = 30 2 which ensures that
all the heat is produced by the heater itself.

Vibration

The thermometers and the heater are suspended via their measurement wires which are

stretched to provide a firm mechanical anchor. There is then no risk of vibration.
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Figure 3.9: (a) Temperature dependence and sensitivity of cernox thermometers models CX-
1050 and CX-1030 (from our “He thermal conductivity setup). (b) The magneto-resistance of
Cernox thermometers (after [109]). They are well suited for thermometry in a magnetic field

at temperatures above 7 K or so.

Heat capacity of the components

This is an issue at higher temperature also since the heat capacity increases with T". This
effect can be seen in Fig. 3.4b. The small size of the components are the main effort done

here to reduce the time constants associated with the thermal RC circuit that is formed.

Reference thermometer

The reference thermometer that is used is a Cernox CX-1050 calibrated by Lakeshore.
Its resistance and sensitivity can be found in Fig. 3.9. It is used for the same reasons as
the two measurement Cernoxes: high sensitivity up to room temperature, low magneto-
resistance [109] and high reproducibility (25 mK maximum shift per year from 1 K to
100 K).

Measuring apparatus

The temperature is measured and controlled using a Lakeshore model DRC-93 tempera-

ture controller. The thermometers are measured using a standard low frequency lock-in
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technique with Stanford Research SR-830 Lock-ins. The heat is applied using a home-
made low noise constant-voltage source. A low noise voltmeter from Keithley (model
DMM-2000) is used to measure the voltage drop across the heater thus measuring the

heat current applied @ = V?/Rpeater-

3.1.5 Data acquisition

The data is obtained in either of two ways: as a function of temperature at constant
magnetic field or vice-versa. This section will describe both methods and the important

steps that need to be taken in each case.

Temperature sweeps

Most of the measurements are done by measuring « as a function of 7. This is always done
by starting at the base temperature and going up in temperature. For each measurement,
the thermometers are re-calibrated against the reference thermometer. This is done for

two main reasons:

e Avoid any shift in the calibration upon thermal cycling. This effect is negligible for
Cernox thermometers but are noticeable for RuQO,. In fact the calibration of the

latter shifts below 100 mK without thermally cycling to room temperature.

e Having a perfect calibration in field for the refrigerator measurements. Indeed,
the reference thermometer is in a field compensated region and does not see its

calibration shift. This does not apply for the setup in the 1 K refrigerator.

The measurements are done following these steps:

1. The temperature is stabilized at a certain temperature.

2. Once the thermometers have stabilized to this temperature, they are measured.
The temperature of the reference thermometer is also measured to provide the

calibration.

3. The heat is then applied on the sample such that the temperature gradient it

produces is roughly 4% of the base temperature.

4. Once the thermometers have stabilized, they are measured along with Q (via the

voltage across the heater).
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Figure 3.10: The temperature profile as a function of time for both the hot and cold thermome-
ters. The temperature sweeps are made by (i) stabilizing the temperature, (ii) waiting for the
thermometers to be stabilized at this temperature, (iii) applying heat and waiting again for
stabilization, (iv) changing the base temperature before repeating the procedure. Inset: the

time evolution of the temperature gradient.

5. The heat is then turned off and the temperature is changed and stabilized at a

higher temperature.
6. This procedure is repeated through the whole temperature range.

This process is shown on Fig. 3.10 by showing the time dependence of the temperature
of both hot and cold thermometers. The temperature gradient is also shown in the inset.

When there is no heat applied, the temperature gradient is of course nil.

Field sweeps

Another useful way to measure « is by keeping the temperature constant and sweeping

the magnetic field. There are two main concerns for this procedure:

e Sweeping a magnetic field has the nasty effect of heating the measurement ther-
mometers. This effect is greatest at low temperatures or while using a high sweep
rate dH/dt. This can be due to several effects: magnetic induction on the mea-
surement wires or vortices entering a superconducting sample. Care must be taken

to sweep the field slowly especially at the lowest temperatures.
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e The average temperature of the sample may be subject to a large change. This
effect is largest when the temperature is very low and the thermal conductance of
the sample and the thermal contacts are changing rapidly with field. For example,
if the cold contact has a fixed conductance and the sample is changing rapidly, the
amount of heat that needs to be applied to keep a constant temperature gradient
will involve a huge thermal gradient across the cold contact. This would in turn
increase the average temperature of the sample. There is no general way to go

around this consideration and it must be dealt with case by case.

To perform a field sweep, the temperature is first fixed at some temperature. The

following procedure is then repeated through the field range required.

1. Heat is applied in order to obtain a temperature gradient of roughly 4% of the base

temperature.
2. We wait for the thermometers to be thermalized and measured them along with Q.

3. The field is then swept to another value at a typical rate of 20 mT/min. At the

same time, the heat is adjusted to keep the same temperature gradient.
4. The thermometers are allowed to thermalize and are then measured along with Q.

5. This procedure is repeated.

3.1.6 Analysis

The thermal conductivity is defined as
__eQ
(Thot - Tcold)

The geometric factor « is measured with either a high precision optical microscope or a

k=aQ/AT = (3.5)

scanning electron microscope. The heat () is measured and easily known. Clearly, the

temperature gradient is the most difficult quantity to extract. With a proper calibration

and a good fitting procedure, it becomes straightforward as shown in Fig. 3.11.

3.1.7 Results

The main question remains: what kinds of results do we get using all of these elaborate

considerations? Thankfully, there are easy ways to assess this. To make sure that the
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Figure 3.11: Extracting the temperature difference AT. The calibration is fitted with a smooth
function (empty symbols). The temperature of the hot and cold thermometers (squares and

circles respectively) are then extracted. The average temperature is also obtained.

setup is measuring k accurately, we can test the Wiedemann-Franz law in any metal. This
unfortunately is only true for low temperatures (typically below T = 10 K), where the
WF law is known to hold. Also, to make sure that our measurements in high magnetic
fields are dependable, we can measure a material that should have no field dependence
(for example, an insulator) and see if our measurement indeed measures no change in .

Let us first examine the thermal conductivity tests below 1 K. To see the experimental
precision, we have measured a silver wire. Its conduction is purely electronic and x should
be perfectly linear in temperature. This is seen in Fig. 3.12a. The inset shows that the
scatter is smaller than 3%. As a note, although the resistivity of this particular piece of
silver was not measured, the typical residual resistivity is po = 0.02 p2 cm which would
translate to /T = Log/pe = 1225 mW K2 cm™1.

Also, the accuracy can best be seen by plotting the Lorenz number (L = £ divided by
the Sommerfeld value (Lo = 2.45x 10~8 W Q K~2). This is seen for a sample of LuNi;B,C
in the normal state (H = 7 T) in Fig. 3.12b to be equal to one within the experimental
precision. Finally, x of an insulating sample of Lay_,Sr,CuO4 with z = 5 % is shown in
both H =0 and H = 8 T (Fig. 3.13). There is no discernable difference between the two
sets of data. (Measurements on LSCO were performed by D.G. Hawthorn).

As for the *He refrigerator, Fig. 3.14a shows the WF law satisfied for a Ag sample

at low temperature. L/Lo decreases below the value of one at higher temperatures
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Figure 3.12: (a) x/T as a function of T for an Ag wire. It is flat with a scatter of ~ 3 %
which is representative of the precision of our setup. (b) L/Lg as a function of temperature for
LuNisBsC at H = 7 T. The Wiedemann-Franz law is verified within our experimental precision,

a test of the accuracy of our setup.

as expected. Also, Kapton® film (an electrical insulator) was measured to test the
sensitivity of the setup with magnetic field. We see that the effect does not surpass 10%
at the lowest temperature and up to H = 15 T. It is below the 1 % level at T = 7 K
(Fig. 3.14b).
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Figure 3.13: x/T against T2 for Laj.95Sr9.05CuQy4 (an insulator) in H = 0 and H = 8 T. The

data is indistinguishable which demonstrates the field independence of our setup. (Courtesy of

D.G. Hawthorn).
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Figure 3.14: (a) L/Lq for an Ag wire from 1.5 to 100 K. The Wiedemann-Franz law is obeyed at
low temperatures and L/Lg falls below 1 at higher temperatures. This is the expected behavior
for a metal. (b) k(H)/x(H = 0) of Kapton® film (an insulator) as a function of H for several
temperatures. Our setup suffers from an uncertainty of at most 10% at 1.6 K and at our highest
field. This reduces to 1% at 7 K.
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Chapter 4
V3Si: test experiment

Much experimental and theoretical activity was generated by the discovery of high-T.
superconductors (HTSC). In turn, many other novel types of superconductors have been
discovered and studied. In this light, the physical properties of such novel materials have
been compared with those of more conventional ones. However, it is often argued that
such ”test-experiments” have not been performed thoroughly enough, leaving room for
ambiguity in the reports of anomalous behavior. Such is the case for the transport of
heat in the vortex state.

For instance, the behavior of conventional type II superconductors was studied long
ago in Nb (T, = 9 K, Hp ~ 0.5 T) down to 50 mK in zero field [66] but only to 2.0 K
(T./5) in a magnetic field. It is of clear interest to study the behavior of an eztreme type
II superconductor both in zero field and in the vortex state. For this, we have chosen the
A-15 compound V3Si (T, = 17 K, H.» ~ 20 T) to be the test case for other experiments.

In addition to providing a test case, such a system is interesting to study in its own
right. Indeed, a Quantum Phase Transition (QPT) at 7' — 0 in the vortex state of such
an extreme type II superconductor was predicted [110]. Another proposal explained the
possibility of a transition from a thermal insulator to a thermal metal at 7 = 0 in the
vortex state through a well known effect: localization due to disorder [111]. Although
we find no conclusive evidence for such a QPT, we will review critically the theoretical
proposals.

In this chapter, we show the first study of the thermal conductivity of a conventional
extreme type II superconductor V3Si down to very low temperatures (50 mK) and in the
vortex state (up to 11.5 T). It will serve as a good point of comparison for other studies

presented in this thesis as well as for other studies of superconductors in the vortex state.

73
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Figure 4.1: V3Si has the A-15 crystal structure. It is cubic and has a lattice parameter ag =
4.718 A. However, V3Si is seen to go through a martensitic phase transition at Tinert =~ 21 K

where the lattice becomes slightly tetragonal with a; = 4.715 A and ay = 4.727 A.

Also, in the context of this thesis, this chapter will put emphasis on the more general
behavior of the thermal conductivity of a type II superconductor in the vortex state and

at finite temperature.

4.1 V3Si: an extreme type II superconductor

Crystal structure

V3Si has an A-15 crystal structure which is shown in Fig. 4.1 as many other superconduc-
tors with relatively high T, such as Nb3Sn. More generally, it is cubic and has a lattice
parameter ao = 4.718 A. This has the effect of making all properties mostly isotropic.
It also has the particularity of undergoing a martensitic transition from a cubic to a
slightly tetragonal unit cell near T}, ~ 21 K. Below this, the lattice parameters are
a; =4.715 A and a, = 4.727 A.

Normal state parameters

V3Si is an isotropic metal with a complex Fermi surface (FS) [112]. The average Fermi
velocity is calculated to be near vy = 1.5x 107 cm/s and the density of states at the Fermi

energy is 17.5 states/eV/unit cell. The heat capacity yields a normal state electronic
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VsSi 17 18.5 80 45 1060

Table 4.1: Superconducting parameters for V3Si taken from the literature [114, 115]. The value

for H.o was measured on the crystals used in this study by magnetization.

contribution of yy =~ 55 — 60 mJ mole™! K™ [113] and a Debye temperature Op ~
350 — 500 K.

Superconducting state parameters

One of the notable properties of V3Si is its relatively high T,. It also has a large upper
critical field which has been reported to be between 18.5 and 25 T. Table 4.1 shows values

for the superconducting parameters of V3Si.

4.2 Characterization: p(T, H) and (T, H) of V3Si

Transport measurements such as resistivity and thermal conductivity are well suited to
characterize the superconducting state. Indeed, one can extract many parameters such
as T,, He., and give an estimate of H,. This will be presented in this section for V3Si.
Also, keeping in mind that our aim is to understand the behavior of the T' — 0 electronic
contribution of k in the vortex state, we will show that one needs to characterize the

normal state magneto-resistance.

4.2.1 The sample

The sample used was cut into a parallelepiped rectangle using a spark-erosion method
and polishing. The transport was done with the current in the [100] direction. It had
dimensions 3.0 mm in this direction, 0.7 mm in the direction of the magnetic field was
applied and a width of 0.25 mm. This geometry is well suited for studies in a magnetic
field. The sample was from the same batch used in previous de Haas-van Alphen (dHvA)
studies [114, 116]. The contacts were made with Epo-Tex H20E silver epoxy. They were
first hardened at 150° C in air and then annealed in high vacuum (P ~ 1077 — 10~®

mbar) and a temperature of 700 °C for eight hours. The contacts had values of ~ 100 m$2

for current contacts and ~ 20 m2 for voltage contacts at low temperatures.
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4.2.2 Resistivity

The resistivity can yield important characterization information both for the normal
state (mean free path) and the superconducting state (T. and H.). In addition, it will
be important for us to be able to normalize the thermal conductivity to its normal state

values via the Wiedemann-Franz law.

Resistivity in zero field

The resistivity of V3Si as a function of temperature is shown in Fig. 4.2a. It agrees well
with previous reports [117]. The superconducting transition occurs at T, = 16.9 K and is
very sharp with 67, = 0.1 K, indicative of a highly homogeneous sample. At low temper-
ature (below roughly 30 K), the resistivity has a quadratic dependence (p = po +AT?), as
is more evident with the measurements in magnetic field (see Fig. 4.3a). This is a strange
result as this temperature dependence is reminiscent of a Fermi-liquid (FL) with strong
electron-electron interactions rather than the more conventional electron-phonon scatter-
ing mechanism which typically dominates the resistivity in metals (and yields p o< T'* with
3 < a < 5). This behavior has been reported and discussed earlier [117, 118, 119] with
no conclusive understanding. Let us point out that the Kadowaki-Woods empirical ratio
for highly correlated electron systems gives A/y? = 1.0 x 1075uQ cm (mole K mJ~1)?
[44] whereas, in V3Si we have vy ~ 60 mJ mole™! K~2 and A ~ 2.4 x 107340 cm K2
yielding A/4? = 0.66 x 107®u€ cm (mole K mJ™')?, close to what is found in transition
elements. The large residual resistivity ratio, p(300 K)/po ~ 66, is indicative of a very
pure sample. This fact is clear since dHvA measurements, a probe which requires high
purity samples, were performed on these crystals [114, 116]. From these was measured
the mean free path, yielding { =1500 A at low temperature !.

In the superconducting state, this value needs to be compared to the Pippard coher-
ence length to estimate wether we are in the clean or the dirty limit. From the standard
relation £(0) = 0.74&o[x(0.88¢,/1)]'/2, where x is the Gor’kov function (equal to unity in
the clean limit), we obtain for V3Si &/l = 0.13, with values of £(0) = 50 A coming from

10ne can also get an estimate of [ for this sample from transport. We can use the kinetic theory

result £k = %C’Upl and the Wiedemann-Franz law %% = Lo at T' = 0. This leads to ppl = ';;TI;:OF which

gives pol ~ 240 uf2 cm A using v = 60 mJ mole~* K=2 and vg = 1.5 x 10~7 cm/s. For our sample, we
obtain [ = 185 A, a value much below that obtained from dHvA. It is unclear why there is such a large
discrepancy with the mean free path obtained from dHvA. A possibility is that the latter is measured
only on part of the Fermi surface and is not representative of the average mean free path. However, as
dHvA gives a direct measurement of I, we will use this value henceforth.
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Figure 4.2: (a) Resistivity of V3Si as a function of temperature. It agrees well with previous
reports. The superconducting transition is seen at T, = 16.9 K and has a width 7, = 0.1 K
indicative of a homogeneous sample. (b) The resistivity is shown for fields up to 16 T. A non-
negligible magnetoresistance is observed. The superconducting transition stays sharp and gives

a good measure of Hea(T).

H_, and [ = 1500 A. This is a good indication that the sample is in the clean limit.

Magnetoresistance

The magnetoresistance of the sample was measured up to H = 16 T as shown in Figs. 4.2b
and 4.3. For our purposes, we will restrict our interest to extracting a value of He(T)
and to phenomenologically fitting the temperature and field dependence of p(T', H) to be
able to obtain the Lorenz number 72 rather than the bare thermal conductivity.

The temperature dependence is clearly shown to have a p = p(0) + AT? behavior on
Fig. 4.3a. Both pp and A have a small evolution as a function of field as can be seen in
Fig. 4.3b.

The martensitic transition discussed above has a distinctive signature as seen in the
resistivity at Tynert = 20.5 K (see Inset of Fig. 4.3a). This transition temperature is not
seen to vary by more than 1 K under a magnetic field of up to H = 16 T.

The upper critical field of these crystals was measured magnetically to be H.(0) =
18.5 T at T = 50 mK (hence denoting it as the zero temperature upper critical field)
along with dHvA studies [114]. Our resistive measurements (see Fig. 4.2b) lead to the
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Figure 4.3: (a) Resistivity of V3Si against T2 for magnetic fields up to 16 T. It follows a
p = po + AT? temperature dependence as reported earlier [117, 118, 119]. Inset: the signature
of the martensitic transition at Tper = 20.5 K is emphasized by plotting p — 0.002 T2 versus
T for the same values of H. Tpnert is marked by black squares. (b) The field dependence of po
and A.

temperature dependence of H,y seen in Fig. 4.4a (H measured via thermal conductivity

is also shown). The temperature dependence is well fitted by the standard relation:
T,
He(T) = He(0) (1 = (7)) (4.1)

The three lines shown in Fig. 4.4 are for H.(0) = 18.5, 20 and 21.5 T. The data is
consistent with that obtained from magnetization (H.2 = 18.5 T) but seem to indicate
that the upper critical field is closer to 20 T. Let us note that we will use H.y = 18.5 T

nevertheless.

4.2.3 High temperature thermal conductivity

The thermal conductivity can be used to characterize both the normal and the super-
conducting state of our sample. In addition to the information that can be obtained in
zero magnetic field, we will see how thermal conduction can be used to obtain H., and

an estimate of H,;.
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Figure 4.4: (a) The phase diagram of V3Si. He(T') is obtained via resistivity (squares) and
thermal conductivity (circles). The lines are fits to the functional form H(T) = He2(0)[1 —
(T/T.)?) with H(0) = 18.5,20 and 21.5 T. (b) The field of vortex entry Hye(T) measured via

thermal conductivity (see Fig. 4.6). Note that H.;(0) is measured to be closer to 80 mT for
V3Si.

Thermal conductivity in zero field

The thermal conductivity of V3Si up to 100 K is shown in Fig. 4.5. The normal state
is similar to that expected for a good metal (see Fig. 2.1). The Lorenz ratio normalized
to its Sommerfeld value is shown in the inset of Fig. 4.5a and suggests that x is mostly
electronic at all temperatures. It is a measure of the inelastic scattering which gives
L/Ly < 1. An extrapolation to T' — 0 indicates that it will reach unity as expected in
the elastic scattering regime. A signature attributed to the martensitic transition is seen

near T = 20.5 K in accordance with the resistivity data.

The superconducting transition is seen clearly as the maximum of the thermal con-
ductivity. That is, if superconductivity didn’t occur, £ would keep rising before reducing
to a linear behavior indicative of the impurity scattering limited WF law. Instead, below
T,, the electron contribution is reduced as expected by the condensation of the Cooper
pairs. A small phonon peak develops around T, /5 and leads to a purely phononic thermal
conductivity with a temperature dependence close to cubic at the lowest temperatures

(see Fig. 4.5b). This will be discussed in more detail in the next section.
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Figure 4.5: (a) The thermal conductivity of V3Si as a function of temperature from T' = 50 mK
to T = 100 K. In the normal state, it has the behavior of a good metal. This is also seen in the
inset where the normalized Lorenz number is plotted. The superconducting transition is seen
as the maximum in x and a dip is seen at Tj,qar¢- In the superconducting state, x decreases at
T. and shows a phonon peak at T./5. (b) x(T’) on a logarithmic scale. Below 1 K, it is purely

phononic and has a temperature dependence close to T3.

Thermal conductivity in field

Lower critical field The effect of adding vortices on the thermal conductivity is to in-

troduce some additional electronic scattering. At temperatures much lower than T, this
only acts on phonons since they are the sole carriers of heat. Near T, this effect can apply
to both electrons and phonons. Regardless, one sees a distinctive signature of the entry
of vortices in the sample as a sharp decrease of . Insofar as one can associate the ”field
of vortex entry” (henceforth labelled H,.) with H,, one can use thermal conductivity
as an indirect probe of the lower critical field. Fig. 4.6 shows such a measurement for
V3Si where k was measured as a function of field at fixed temperatures. For each tem-
perature, the sample was warmed above T, and cooled back in zero field (after a careful
field-zeroing procedure). The temperature dependence of H,. is shown in Fig. 4.4b and

is seen to be roughly linear in temperature with a T' = 0 value near H,.(0) ~ 250 mT.

Upper critical field The upper critical field can also be easily measured via thermal

conductivity. This was done here with measurements of « as a function of temperature
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Figure 4.6: Thermal conductivity of V3Si at low fields for several temperatures below T,. A

sharp decrease is indicative of the field H,. at which vortices enter into the sample.

at a fixed magnetic field as shown in Fig. 4.7a '. There, we see a sharp decrease of ¥
at T.(H), which is equivalent to H(T). Fig. 4.4 shows that values agree well with the
resistive H,,. The temperature dependence and the extracted zero temperature value

have already been discussed above.

However, H,. is an upper limit to H,;. Indeed, two main effects can lead to Hye > Her:
1/ a geometrical demagnetization factor which can be calculated with the geometry of the
sample and 2/ the effect of vortex pinning. The latter will make the magnetization as well
as any other property hysteretic as observed in V3Si [120]. It also has the effect of creating
a barrier for vortex entry making them enter the sample in so-called avalanches when
the barrier is overcome. The demagnetization factor can be calculated for an ellipsoidal
sample [121] but is usually obtained using a superconductor with a known H. and cut
into the same shape as the studied sample. Approximating our sample to be an ellipsoid,
we obtain a demagnetization factor of roughly D/4w ~ 0.25 where H; = H, — DM and
H; is the internal field, H, is the applied field and M = 4mxH, is the magnetization (x is

1One can also obtain the same information by performing field sweeps at constant temperature.
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Figure 4.7: (a) /T of V3Si as a function of temperature for fields up to 16 T. The supercon-
ducting transition is seen with an abrupt decrease of k. (b) The normalized Lorenz number
kp/TLg for fields up to 16 T. In the normal state, the magnetoresistance is accounted for by
this procedure. In the superconducting state, we have used the extrapolation of the resistivity

below T,. At low temperature, there is an increasing electronic residual linear term.

the magnetic susceptibility) [121] 1. Both these effects explain that the intrinsic H(0)

is measured to be closer to 80 mT [115].

The temperature dependence of k The temperature dependence of the thermal conduc-

tivity at several fields is plotted as x/T against temperature on Fig. 4.7a. Above T, there
is a small decrease of x as a function of field. This is due to the magnetoresistance and
is consistent with the resistivity measurements. Indeed, if one plots the Lorenz number
normalized by its Sommerfeld value % /Lo, one sees that the data collapses above T (see
Fig. 4.7b). This also reminds us that in this case, where the magnetoresistance is not
negligible for all fields below H, the zero temperature electronic thermal conductivity
ko/T should be normalized to the corrected normal state value, namely Lopo(H) where
po(H) must be extrapolated from a fit above T,(H).

In the superconducting state, one sees an abrupt decrease at T, which is due to the

condensation of the Cooper pairs. At lower temperatures, one can easily resolve an elec-

1As a general note, if the demagnetization factor is the only source of discrepancy between H.; and
H,., then this measure of H,, effectively becomes a useful parameter for the sample with the added
benefit of being measured in-situ.
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tronic residual linear term 1. This will be discussed in the next section where data at low
temperatures will be used. It is clear that by H = 16 T, the zero temperature electronic
thermal conductivity is no more than a third of the normal state value. Considering
that H,, is around 20 T, ko/T will have a very sharp rise near the upper critical field as

expected for a type II s-wave superconductor and as observed in pure Nb [20].

4.3 k(T,H) at low temperatures

The thermal conductivity of an s-wave extreme type II superconductor at low temper-
atures and through the vortex state has never been measured before. It is a necessary
test-experiment to compare the behavior seen in unconventional superconductors. What’s
more, it is interesting in its own right as predictions of quantum phase transition where
made for such superconductors [110, 111]. For this alone, and to obtain the true zero
temperature behavior, it is necessary to go to extremely low temperatures. Technically
speaking, it is also necessary since the electronic thermal conductivity can only be reliably
extracted at these temperatures, especially at low magnetic fields.

In this section, we first show that the thermal conductivity of V3Si in zero field is
consistent with an s-wave superconductor. We then find a reliable way to extract the
electronic thermal conductivity at T — 0 to finally present its magnetic field dependence.
These results are discussed and compared to present theoretical understanding and pre-
dictions. Notably, we do not find conclusive evidence for a quantum phase transition

within the vortex state of V3Si.

4.3.1 & in zero magnetic field

In zero magnetic field, the electronic thermal conductivity of an s-wave superconductor
is nil at low temperatures due to the gap in the excitation spectrum [9]. & is then
purely phononic and should follow a cubic temperature dependence when phonons are
scattered solely by the sample boundaries. Fig. 4.5b shows that this behavior is indeed
roughly reached below 1 K. Let us be critical and see if one can resolve a residual linear
term as is predicted for a gap with nodes [81]. For this, we plot x/T against T? in
Fig. 4.8a for temperatures below 150 mK. There, we see that the intercept is small but

1Note that the measurements at lower temperature and higher fields have an increased error bar not
shown on Fig. 4.7 but discussed in Chapter 3
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finite: ko/T < 0.01 mW K2 cm™. This may lead us to believe that there remains some

electronic carriers at T = 0. However, many arguments stand against this conclusion:

e The linear term observed is much smaller than that expected from a gap with
nodes. For example, for a d-wave gap, one expects a linear term of the order of
ko/T ~ 1.0 mW K~2 cm™ ! which is two orders of magnitude higher than the

upper limit of the measured value.

e The extracted value is less than a third of the value at the lowest temperature

point. This casts doubt on the extrapolation procedure.

e A much simpler explanation exists: as is observed in Nb (see Fig. 2.5b) and other
materials, the phononic contribution may have a power law temperature 7 with
2 < a < 3 due to specular reflection on smooth crystal boundaries [63]. This is

indeed the case here where k oc 7% as shown in Fig. 4.8b.

It is worth noting that the phononic thermal conductivity is in good agreement
with the theoretical estimate for boundary limited scattering. Using equation 2.22,
the mean diameter d = 0.047 cm, and vy, = 5 X 10° cm/s, we get a phonon slope
of 7.6 mW K% cm™! as compared to 8.5 mW K% cm™' obtained experimentally from
Fig. 4.8a.

In summary, the thermal conductivity of V3Si in zero field is purely phononic with a
T2 temperature dependence. This is a signature of a fully gapped Fermi surface as is

expected for an s-wave superconductor.

4.3.2 Extrapolation of k. at T — 0 in field

The thermal conductivity was measured with increasing temperature at several fields for
V5Si as shown in Fig. 4.9. The sample was cooled in field from above T, to obtain a

homogeneous vortex distribution and avoid any extrinsic effects due to vortex pinning 2,

2

'We have koo /T = %g () (35 + 22) [85]. We use the fact that hkpv = Ao /2 (for a d-wave gap)
and hkp = m*vp to obtain koo /T = % ) (ﬂé—z}i) Using d = 4.718 A, n = 1, m* as the electron
mass, vp = 1.5 x 107cm/s and Ag = 2.5 meV, we get kgo/T ~ 1.0 mW K2 cm .

2Strictly speaking, there may still be effects of vortex pinning, especially at low fields. However, this
procedure ensures that the results are at least reproducible on this sample whereas applying the field at
low temperature may have a different effect considering the history of the sample (the history of fields
applied to it earlier).
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Figure 4.8: (a) and (b) /T of V3Si as a function of T? and T17# respectively in zero magnetic
field. The phonon slope agrees well with what is expected (see text). One may think that there
is a small electronic term as extracted from (a). More likely though, the phononic thermal
conductivity obeys a power law T1-7* due to specular reflections from the crystal boundaries as

is shown in (b).

It is clear from Fig 4.9a that the magnetic field induces a linear electronic term and affects
the phononic contribution as well. Since we are interested in electron physics, we will
need to subtract the phononic contribution in a reliable way. We will then concentrate
on its behavior with field.

As discussed above in the context of a measurement of the lower critical field, vortices
have the effect of scattering phonons. Referring to Chapter 2, we see that we obtain a
phononic thermal conductivity of the form k o< T® for boundary scattering and x = bT?
for electronic scattering. When both these scattering mechanisms are at play, boundary
scattering will dominate at lower temperatures, consistent with a ”phonon slope” which
is asymptotically equal at low temperatures (see Fig. 4.9a). To fully characterize the

data, we have fitted it to the following way:

1 1
1/Kph—b + 1/Kph—e ke = 1/k(H = 0) + 1/bT? ta

K= Kph + Ke =

T (42

where x(H = 0) is taken as the phononic contribution scattered by boundaries. This
enables us to have a simple two parameter fit to the thermal conductivity and extract
the electronic contribution k. = aT'. We fit the data below T' = 400 mK and obtain very
good results as shown by the lines through the data in Fig. 4.9a. In the inset of the lower
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Figure 4.9: (a) Thermal conductivity of V3Si as a function of temperature for fields up to
11.5 T. Two effects occur: 1/ a linear term develops and 2/ the phonons are increasingly
scattered by the vortices. The lines are fits described in the text. Inset: the field dependence
of b, where kpp_ = bT?. (b) The electronic thermal conductivity as obtained from subtracting
the phononic contribution. We can distinguish unambiguously an electronic contribution only
for fields above 0.5 T (lowest field shown here is 0.7 T for clarity). Below this, our experimental

resolution gives us an upper bound on x./7T < 0.005 mW K2 cm™ 1.

panel, we plot the field dependence of the parameter b for phonon-electron scattering.
The latter is seen to vary as 1/H for almost two decades of field. This behavior is easily
understood if one considers that the density of electronic scatterers varies linearly with
magnetic field (as expected and as observed via heat capacity measurements [113, 122]).
Indeed, with a larger field, the phonons will be scattered increasingly and b will decrease.
The exact behavior is extracted to be kp,_o = %= with b= 2.5 mW K3 cm™ T~'. Note
that this coefficient will surely vary for different compounds. The fact that this effect
extends to fields below the measured H.,(0) = 250 mT also tells us that our field cooling

procedure has the effect of introducing vortices even at these low fields.
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Finally, we show the electronic contribution /T as a function of temperature for
various fields in Fig. 4.9b. The phononic contribution has been subtracted from the data.
We see that our experimental resolution does not enable us to resolve an electronic term
for fields below H = 0.5 T (although the 0.7 T data is the lowest shown in Fig. 4.9).
Below this field, we can estimate the upper limit of the electronic thermal conductivity
to be ko/T < 0.005 mW K2 cm™!. We also see that the temperature dependence is
clearly linear at all fields, a good indication that our fitting procedure is reliable.

We have found a reliable way to extract the electronic contribution to the thermal
conductivity at T' — 0. The data is well understood in terms of a phononic contribution
which undergoes both boundary and electronic (vortex) scattering. The latter mechanism
is seen to scale inversely with the density of vortices introduced in the sample, namely
as 1/H. Let us now turn to our main interest: the behavior of the electronic thermal

conductivity as a function of magnetic field at T' — 0.

4.3.3 k. at T — 0 in a magnetic field

The electronic thermal conductivity of VsSi is shown in Fig. 4.10 against H/H and
normalized in two different ways: as xepo(H)/LoT and kepo(H = 0)/LoT where po(H) is
the extracted residual resistivity as a function of field (see Fig. 4.3). At first sight, three

main features must be emphasized:

e We observe delocalized quasiparticle states very deep in the vortex state (at least
down to 0.027 H., or H = 0.5 T). This is consistent with the observation of quantum
oscillations in the vortex state of V3Si [114, 116]. Note that quantum oscillations

were only observed down to H.,/2 probably due to experimental limitations.
e At fields below 0.016 H,,, our error bars put an upper limit of k./T' < 3 X 107* k.

e At 0.6 Hy, we see that k./T ~ 0.17 kn. The electronic thermal conductivity will

therefore increase very quickly near Hs.

The observation of delocalized quasiparticles seems unusual as the electronic states
are thought to be localized within the vortex cores. However, strictly speaking, as soon
as more than one vortex is in the sample, the electronic wavefunctions become extended.

Another way to say this is that bands of conduction are formed, as calculated by Yasui
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Figure 4.10: The electronic thermal conductivity at T — 0 as a function of H/Hc (we use
H. = 18.5 T). The thermal conductivity is normalized to the normal state value using the
extracted residual resistivity and the WF law. The solid line is a theoretical curve for V3Si

from Dukan et al. [72]. Inset: A zoom of the low field region.

and Kita [67, 68]. These are extremely flat at low fields but become increasingly dispersive
at higher fields.

For low vortex densities (i.e. at low fields), a naive picture would have k./T be
proportional to the overlap of the wave functions of localized states in adjacent vortices.
This would lead to an activated behavior as a function of d/2¢ where d is the intervortex
separation and £ is the characteristic electronic length scale for the vortex cores, such
that k o« e"¥%(0) at T — 0. Using the expressions for d (Equation 1.9) and £(0)
(Equation 1.13), we obtain:

Re/T(T b d 0, H) x e_a(ch/H)l/Z

e (4.3)

where a = v/27/2 =~ 1.25. To verify if this relation holds, we plot (k¢/T)/(kn/T)
against (Ho/H)'Y? on a semi-logarithmic scale in Fig. 4.11a. There, we see that we
obtain qualitatively the correct behavior at low fields and a quantitative agreement with
a coeficient a = 1 which is close to o = v/27/2 ~ 1.25. Also, this behavior holds only
for fields below ~ H./8. This is not particularly surprising as this simple picture is

expected to break down for higher vortex densities.
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Figure 4.11: (a) The normalized electronic thermal conductivity of V3Si against (Hez/H /2,
The line is a fit to the low field points and yield ks/ky = 0.23 x e~ (He2/H 2, (b) The same
data and fit shown as a function of H/H.

Experimentally, (k./T)/(kn/T) is seen to go from zero (within error bars) to a finite
value rather abruptly and for a field above H.;. This may be interpreted as a transition
from a thermal insulator to a thermal metal as has been proposed theoretically [111, 110].
In this light, it is interesting to plot the low field fit to Eq. 4.3 on a more natural scale,
namely, against H/H., (see Fig. 4.11b). It is clear that this functional form simulates
this behavior very well: a very low conductivity at extremely low fields which increases
abruptly. We should point out that at fields below 0.016 H/H,, this fit is consistent with
our errors bars. We are forced to conclude that, with our current experimental accuracy,
we could not differentiate a thermal insulator to thermal metal transition from the naive
behavior presented here.

Let us now turn our attention to the available theoretical proposals. After reviewing

them briefly, we will try to compare them to experimental data.

TeSanovi¢ and co-workers

The observation of dHvA oscillations deep in the vortex state of extreme type II su-
perconductors such as V3Si, NbSe,, Nb3Sn, CeRu,, YNipyB2C, URu,Si; to name a few
[123, 116, 114] has attracted much attention recently. The presence of such delocalized

quasiparticles was contrasted with the idea of localized states in the vortex cores. The
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various theoretical treatments have been reviewed critically and compared to experiment
for both V3Si and NbSe; [116]. One of these was developed by Tesanovié and co-workers
[110]. They predict a quantum level-crossing transition (QLCT) from the gapless regime
at high fields in the vortex state to the low field regime where the spectrum is gapped.
This level crossing occurs at a field Hy < H* < H which is associated with the dis-
appearance of the dHvA oscillations. Experimentally, H* ~ H,,/2 for V3Si [114] and
H* ~ H_ /5 for YNi,B,C for example [124, 125]. A naive expectation is to find a crossing
from a thermal insulator below H* to a thermal metal above. A more detailed calcula-
tion within this framework has been carried out by Dukan et al. [72]. What’s more, this
calculation was made specifically for V3Si and with parameters extracted from dHvA
experiments on the same crystals as used in this study. It is important to note that the
calculations were made with no free parameters. The results are presented in Fig. 4.10
and is seen to fit reasonably well. At low fields, the calculation becomes less and less
accurate as the approximations used are no longer valid.

Although this result is stunning, it keeps the character of ”consistency” rather than
»proof’. Indeed, we find no direct evidence from thermal conductivity for the predicted
QLCT nor is it predicted to have a distinctive signature. We therefore conclude that our
results are consistent with the theory of TeSanovié et al. [110] but do not bring forth

conclusive evidence for the existence of such a QLCT.

Vishveshwara and co-workers

Vishveshwara et al. predicted a novel transition at T = 0 within the vortex state of
a type II superconductor [126, 127]. There, the system would evolve from a thermal
insulator at low fields to a thermal metal above a critical field H. This theory is based
on the idea of Anderson localization where disorder plays a key role. In this case, the
disorder would apply to the vortex lattice. In the case of a disordered vortex lattice, the
thermal conduction would be suppressed whereas a metallic behavior would be recovered
in the case of a ordered lattice.

Unfortunately, this theory cannot be addressed properly by our experiment on V3Si.
Indeed, we use a field cooling procedure which is known from muon spin relaxation
experiments to yield a fairly well ordered vortex lattice. This is in contrast to increasing
the field at low temperature. What’s more, it would be difficult to characterize the

level of disorder of the vortex lattice. Finally, it should be mentioned that according
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to this theory, at a fixed vortex density, the conduction should be metallic in the case
of an ordered lattice and insulating in the opposite case. To verify this, an interesting
experiment would be to measure the thermal conductivity at some fixed vortex density
(or field) and as a function of vortex lattice disorder. Such a parameter is difficult to
tune and even to characterize.

In short, our experiment, although it may seem to be the natural one to test the
theory developed by Vishveshwara et al. [126, 127], is ill-suited. A test experiment has

been suggested but seems at present unfeasible.

Kusunose, Rice and Sigrist

On a final note, we mention that Kusunose et al. have performed a calculation of the
thermal conductivity throughout the vortex state for both an s-wave superconductor
and a multi-band superconductor [128]. They find that the effective scattering rate in
the superconducting state will depend strongly on the purity of the system (in terms
of I'/A which is equivalent to the traditional &/!). They show the calculated thermal
conductivity for the case of &/l = 0.08 which is close to the value for our sample. Their

results are also consistent with our measurements.

4.4 Conclusion

We have studied the thermal conductivity of V3Si in the normal and superconducting
state. This has lead to a good measurement of the electronic contribution of x at very
low temperatures and through the vortex states.

The results will serve as a key reference for further studies of x in the vortex state
of novel superconductors. Although novel physics was predicted in the vortex state
of conventional type II superconductors, we have found no conclusive evidence for a
thermal insulator to thermal metal transition within the vortex state. However, we note
that calculations of Dukan and co-workers reproduce fairly well our results within their
theoretical framework and with no adjustable parameters [72].

In addition, we have shown in detail the information that can be gained via resistivity

and thermal conductivity measurements of a superconductor.
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Chapter 5
Borocarbides: highly anisotropic gap

The vast majority of known superconductors are characterized by an order parameter
with s-wave symmetry and a gap function which is largely isotropic and without nodes
(zeros). Only four families of materials are seriously thought to exhibit a superconducting
state with a different symmetry: (1) heavy-fermion materials, such as UPts; where a line
of nodes in the gap function has clearly been identified [33]; (2) high-T, cuprates (HTSC),
such as YBa,Cu30, where the order parameter was clearly shown to have d-wave sym-
metry [26]; (3) the ruthenate SroRuQy, where there is strong evidence for a triplet order
parameter [31]; and (4) organic conductors, such as k-(ET),;Cu[N(CN).|Cl where there
is growing evidence for unconventional superconductivity [129]. A major outstanding
question is the nature of the microscopic mechanism responsible for superconductivity in
any of these materials. The general belief is that unconventional symmetry of the order
parameter is evidence for pairing caused by electronic interactions and not mediated by
phonons. For example, the proximity to magnetic order which is found in all four families
of superconductors has led to the suggestion that spin fluctuations are responsible for
Cooper pairing, as is thought to be the case in superfiuid 3He.

However, the pairing mechanism may not be directly related to the nature of the
gap. Indeed, even in the case of cuprates where the clearest evidence exists for a gap
with nodes, there is good reason to believe that the pairing mechanism is due -at least in
part- to phonons [130]. Here, we turn to the non-magnetic borocarbide superconductors
LuNiy,B,C and YNi,B;C where we find overwhelming evidence for a strongly anisotropic
s-wave gap, and where the pairing mechanism has been shown to be phonon-mediated.
This scenario is interesting in its own right, as the source of such a strong anisotropy

is not yet understood. In addition, these systems may serve for future studies of novel
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superconductors as a reference for the case of an anisotropic gap with no topological
nodes.

In this Chapter, we will present a study of heat transport through the vortex state of
LuNiyB,C [92] which provides evidence for a highly anisotropic (at least ten-fold) gap in
non-magnetic borocarbides superconductors. We will then examine the body of evidence
for an anisotropic gap in these compounds before briefly reviewing the evidence for a

phonon-mediated pairing mechanism.

5.1 LulNi;B,C and other borocarbides

A new family of superconductors with general formula RE-Ni,B,C (with RE=Lu,Y, Tm,
Er, Ho, and Dy), was discovered in 1994 [131, 132] and raised much interest as it was
seen as a haven to study the interplay between superconductivity and magnetism [133].
Most of them display magnetic ordering, except for two: LuNi;B,C and YNi;B,C which
are non-magnetic and have the highest superconducting T¢’s of 16.5 K and 15.5 K, re-
spectively [134]. Our interest will be restricted to the latter two compounds, which where
long thought to be quite mundane but turn out to have a strongly anisotropic supercon-
ducting gap. Let us first review their crystallographic, electronic and superconducting

properties.

5.1.1 Crystallographic properties

LuNi,B,C and YNiyB,C have a tetragonal unit cell as shown in Fig. 5.1a. Its layered
structure, with Ni-B planes, is reminiscent of that of HT'SC. However this similarity
yields no parallel as the borocarbides are 3D metals [135, 136], in contrast to the highly
2D nature of cuprates. The lattice constants are a = 3.464 A and ¢ = 10.631 A for
LuNi,;B,C, and a = 3.526 A and ¢ = 10.534 A for YNiyB,C.

5.1.2 Electronic properties

Both LuNiyB,C and YNiyB,C are good 3D metals with nearly isotropic resistivity [138].
This agrees with band structure calculations [135, 136] which show that there are 3
bands forming the Fermi surface (FS). The FS has a complex shape which has been
reconstructed successfully experimentally using the electron-positron annihilation tech-

nique [137] (see Fig. 5.1b which shows a part of the FS). The average Fermi velocity
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Figure 5.1: (a) The crystal structure of LuNi;B2C. The unit cell is tetragonal and is reminiscent
of that of HTSC due to its Ni-B planes. However, the electronic properties are 3 dimensional
and isotropic. The lattice constants are a = 3.464 A, ¢ = 10.631 A. (b) The calculated (bottom)
and measured (top) Fermi surface of LuNiyB2C (after [137]). This is a cross-section of the third

band in the [001] plane and through the I' point. The arrow indicates the nesting wavevector.

(in any direction) is calculated to be vp = 3.6 X 10" cm/s for LuNiyB,;C and is ex-
pected to be the same for YNi;B,C, and the density of states at the Fermi surface is
N(0) = 4.8 states/(eV unit cell) for LuNi;B,C and N(0) = 4.03 states/(eV unit cell) for
YNi,B,C.

The temperature dependence of the resistivity of both compounds is linear for a large
range of temperature (100 K < T < 300 K) but reaches a behavior close to T? for
lower temperatures [139]. More precisely, LuNi;B,C has a p ~ po + AT? with A ~
1.8 x 107340 cm/K? in the range T, < T < 40 K and YNi,B,C displays p ~ po + BT*?
(with B ~ 8.1 x 107*uQ ¢cm/K??) in a similar temperature range. Using the mea-
sured value vy =~ 19 mJ/mol/K2, one obtains A/y? = 5.0 x 10764 cm (mole K mJ~1)?
which is much smaller than the experimental Kadowaki-Woods ratio A/y? = 1.0 x
10~%u) cm (mole K mJ~1)? for strongly interacting electron systems [44]. This unusual
temperature dependence is thus probably not due to an electronic scattering mechanism.
Instead, the resistivity was fitted over the full temperature range by Bloch-Griineisen
theory (involving only electron-phonon interaction) [140].

The normal state heat capacity yields an electronic linear term yx ~ 19 mJ/mol/K?
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for both compounds [141, 142, 143, 144]. The phononic contribution yields Debye tem-
peratures of ©p 7, ~ 350 K and ©p y ~ 500 K which agrees with results from lattice
velocity measurements [145].

Most of these properties are quite characteristic of usual metals. However, two un-
usual features need to be pointed out. First, there exists a nesting vector near [0.5,0,0]
[137]. This is the wavevector for the ordering in antiferromagnetic borocarbides [134].
Secondly, a Kohn anomaly occurs at this wavevector in both LuNi;B,C and YNi,B,C
in the superconducting state [146, 147, 148]: a phonon mode with this wavevector is
observed to soften below T.. We will see later that this phonon mode may be responsible

for the pairing interaction in these borocarbides.

5.1.3 Superconducting properties

The non-magnetic borocarbides have a rather high critical temperature and upper critical
field, making them ”extreme type II” superconductors. Loosely speaking, Tesanovié¢ et
al. define this as a ratio T,/ H.o ~ 1 where the temperature and field are in units of Kelvin
and Tesla [110]. Along with H.;, these properties define the superconducting state rather
well. Indeed, they define the H-T phase diagram, but also give a good estimate of the
Ginzburg-Landau coherence length £(0) and the penetration depth A(0). Table. 5.1 shows
these values for LuNiyB,C and YNiyB2C. They are seen to be very similar. In fact, there
is little doubt that most properties of these two systems are almost identical, and results
from one or the other are taken to apply to both.

However, another quantity is of interest, namely &o/1, where &, is the Pippard coher-
ence length and [ is the mean free path (which depends on the quality of the sample).
This tells us whether the sample is in the clean or dirty limit (§o/l < 1 or &/l > 1). We
find & = 0.57(%‘1’,—’:) = 290 A using vz = 3.6 x 107 cm/s. The mean free path at low
temperature can be obtained from transport and thermodynamic measurements, giving
pol = 350 u2 cm A for LuNipB,C and pol = 420 u cm A for YNi,B,C 1. For our
sample, po ~ 1.3 uf) cm, giving [ = 270 A. Such a sample has &, /l ~ 1 which can still

be viewed as the moderately clean regime (for a more detailed discussion, see [149]). It

1This is obtained by using the expression for the resistivity p=! = 2/3e2N(0)vpl where N(0) is the
density of states, vy is the Fermi velocity. Using the calculated values of N{0) = 4.8 states/(eV unit cell)
and vp = 3.6 x 107 cm/s [136]. Alternatively, the same result is obtained by using the kinetic expression
for the thermal conductivity k = %C'Upl and the WF law, giving an expression for the mean free path

l= 31{‘2 where v is the measured normal state electronic heat capacity (v = 19 mJ mole~! K~2).
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T.(K) He(T) Ha(mT) £0)(A) M0)(A) & (A)
Lu 16.5 7-8 80 75 760 290
Y 15.5 6.5-10.5 30-80 80 1200 290

Table 5.1: Superconducting parameters for LuNiyB,C (Lu) and YNigB2C (Y) taken from the

literature. They are similar for both compounds.

should be noted that de Haas-van Alphen (dHvA) measurements on these sample obtain
a slightly higher value for the mean free path [124, 125, 150].

These superconductors were long thought to be conventional, with an s-wave sym-
metry of the order parameter and phonon mediated pairing mechanism. Most notably,
a large isotope effect was observed (indeed, boron is rather light and can give way to a
large isotope shift) [151]. In light of this, further studies did not criticaliy examine the
question and analyzed their results in terms of an isotropic gap. For the most part, they
found them to be consistent with this picture but none truly showed convincingly that
this was the case.

There is now overwhelming evidence that the superconducting gap is strongly anisotropic.
It seems however that this is not due to an unconventional pairing mechanism but rather
to phonons, although this question is still under scrutiny. Let us now review this evidence

starting with our own: thermal conductivity through the vortex state.

5.2 The case for a strongly anisotropic gap

The most direct evidence for a highly anisotropic gap function comes from thermal con-
ductivity [92, 152], heat capacity [141, 153, 154, 155], photo-emission spectroscopy [156]
and scanning tunnelling spectroscopy [100]. We will review these results in more detail,

and refer to other less direct evidence.

5.2.1 Thermal conductivity in the vortex state of LuNi,B,C

The presence of nodes in the gap function is generally associated with unconventional
(non-s-wave) symmetries. These nodes are typically inferred from the observation of
quasiparticle excitations at energies much lower than the gap maximum A, as reflected,

for example, in the power law temperature dependence of various physical properties,
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such as London penetration depth and ultrasonic attenuation at 7' < T,. Another way
of detecting low-energy quasiparticles is to excite them by applying a magnetic field,
which introduces vortices in the material, so that the superfluid flow around each vortex
Doppler shifts the quasiparticle energy. In certain limits, the quasiparticle response is
the same whether induced by a thermal energy kgT or by a field energy ~ Ay \/F/_B; )
where By ~ H,,, the upper critical field [157)].

The following thermal conductivity results present compelling evidence that the gap
function of LuNi,B,C is highly anisotropic, with a gap minimum Ap;, at least 10 times
smaller than the gap maximum, Api, < Ag/10. This statement is based on the obser-
vation of delocalized quasiparticles at very low energies, as measured directly by heat
transport. Indeed, quasiparticle conduction is induced by a magnetic field as low as
H, ~ H,;/100 and it grows linearly with field, in dramatic contrast with the expo-
nentially activated transport seen in Nb, for example, where it results from tunnelling

between the localized states bound to the core of adjacent vortices.

Experimental details

The sample used for this study was grown by a flux method [133]. It was then cut by
spark-erosion and polished such as to obtain a rectangular parallepiped for measuring
transport properties in the [100] direction (along the planes of the tetragonal unit cell).
The sample had a width of 0.495 mm (along [001]) and a thickness of 0.233 mm (along
[010]), with a 1.59 mm separation between contacts (along [100]). This geometry was
used in order to minimize the demagnetization factor for a field applied in the [001]
direction. All contacts were made with non-superconducting solder and using a stainless
steel flux. This gave extremely good contacts with resistances below 5 m{2 at room
temperature as compared to a sample resistance of roughly 3 m{) at room temperature.

The sample has a T, = 16 K with a transition width AT, = 1.0 K. It is of very high
quality with a residual resistivity ratio (RRR) p(300 K)/po = 35 € cm/1.3 pf2 cm = 27
where the resistance at low temperature is extrapolated to T = 0 from a fit to p = po+aT?
between T, and 50 K. The resistivity is shown in Fig. 5.2a *.

The upper critical field at zero temperature is measured to be H(0) ~ 7 T. Also, we
find that H, ~ 60 mT at 2 K from the sharp drop of the thermal conductivity which is

INote that there is a small positive magnetoresistance which gives a value of the residual resistivity
po =167 ulcmat H=8T.
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Figure 5.2: (a) The resistivity of LuNisBoC as a function of temperature. The superconducting
transition occurs at T, = 16 K. (b) The thermal conductivity at temperatures above 1 K
for the sample. There is a change of slope at T, and a phonon peak near T,/5 typical for
superconductors. (c) The Lorenz number L = _% normalized to the Sommerfeld value Lo =
2.45 x 1078W Q K2 as a function of temperature. (d) x as a function of field at T = 2 K. The

sharp decrease indicates that vortices penetrate the sample at H; ~ 60 mT.

due to the entry of vortices which scatter phonons strongly (see Fig. 5.2d).

Thermal conductivity in zero field

The thermal conductivity was measured at temperatures above 1 K as shown in Fig. 5.2b.
It displays the usual features seen in a superconductor, namely, a change of slope at T,
and a phonon peak near T,/5 [158]. These measurements agree well with other reports
of LuNiyB,C and are very similar to the results for YNi,B,C [159, 160, 161] except for
the larger phonon peak, which may be due to better crystal quality. In the normal
state, x is dominated by electronic carriers near T, as can be seen from the fact that the
normalized Lorenz number, L/Ly = U—I’TLE, is smaller than unity. Now, let us turn to very
low temperatures where more can be learned about the superconducting state.

Fig. 5.3 shows the temperature dependence of the thermal conductivity as a function
of temperature down to 70 mK. The data is plotted as x/T against 72 to distinguish
the electronic and the phononic contributions. In a superconductor with a fully gapped
Fermi surface, the electronic contribution at 7" = 0 would be nil and k¥ would be entirely

phononic. This does seem to be the case here although a small residual linear term
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Figure 5.3: (a) Thermal conductivity of LuNigB2C in zero magnetic field for a heat current in
the [100] direction [158]. The data is plotted as x/T against T'2. s reaches a cubic temperature
dependence at low temperature with the expected magnitude for phonon thermal conductivity
(see text). Inset: The same data presented as k against T. This is to give an idea of a raw
set of thermal conductivity data. (b) The same data plotted against 7'*-74. This power law fits

the data over a larger range of temperature and describes the phonons well, with no electronic

linear term.

koo/T < 0.01 mW K~2 ¢m™" cannot be ruled out. Let us explore the possibility of
this small residual term stemming from a gap with topological nodes. One first notices
that the normal state value given by the WF law is ky /7T = 18.8 mW K2 cm ™ (with
po = 1.3 € cm) which is three orders of magnitude larger.

Let us now estimate what the electronic thermal conductivity would be for a gap with
topological nodes. For simplicity, we will use the formula for a d-wave superconductor
(the result will not be significantly different for other types of nodes [81]). We have
koo/T = g%— (2) (& + :j—f:) [85]. We use the fact that hkpvs = Ay/2 and hkp = m*vp

d V2

to obtain kg /T = %25 (%) (mA:%') Using d = 10.631A, n = 1, m* as the electron mass,

vr = 3.6 X 107cm/s and Ay = 2 meV, we get kgo/T =~ 3.3 mW K2 cm ™! which is two
orders of magnitude larger than the experimental upper limit. In fact, for the overdoped
cuprate superconductor T1-2201, which has a similar T, ~ 15 K and n/d = 2/ 23.6A, the
electronic thermal conductivity in zero field is xo/T = 1.41 mW K~2 cm ™" [162].
Instead, let us look at the magnitude of the T term of the thermal conductivity:

Kk ~ bT® with b = 8.6 mW K% cm™". Using equation 2.22 with a mean diameter of
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the sample of 2 x \/m = 0.038 cm and a phonon velocity of vy, =~ 5 x 10° cm/s
[163, 145], we obtain b = 7.4 mW K~* cm™ ! in very good agreement with experiment. It
should be noted also that the phononic contribution can be better fitted using sy, oc T¢
(where 2 < o < 3 [63]). This is shown for & = 2.74 on Fig. 5.3b. Such a behavior is
probably due to specular (rather than diffuse) scattering on the crystal boundaries (as
seen in Nb: see Fig. 2.5b), which agrees with the observed thermal conductivity being
slightly larger than the calculated one (since the mean free path is effectively larger
than the sample mean diameter). Using this fitting procedure, the electronic thermal
conductivity is £/T = 0.000 & 0.002 mW K2 cm™!, again in accordance with an s-wave
gap.

In summary, the thermal conductivity of LuNisBsC in zero field is purely phononic
with no electronic contribution. This constitutes evidence for a Fermi surface which is

fully gapped, at least along the ab plane *.

Thermal conductivity in a magnetic field

Let us now turn to the vortex state, where vortices introduce electronic excitations. The
question that we ask is how do these quasiparticles go from being localized at zero field to
being fully delocalized in the normal state? [92).

The thermal conductivity «(T") of LuNi;B,C is plotted in Fig. 5.4, as /T vs T? for
different values of the magnetic field, applied perpendicular to the heat current (H || [001]
and Q || [100]). As we saw above, & is purely phononic in zero field. However, plotting
the data is this way allows us to extract an additional linear term which develops in
the vortex state. This is seen as a rigid shift from the H = 0 T data for low values of
magnetic field. Indeed, the phonons do not get scattered significantly by the electronic
excitations since the strength of the scattering is too weak with respect to the dominant
boundary scattering. This is made possible thanks to the low temperatures and the small

cross-section of the sample. At fields above ~ 2 T, the thermal conductivity is linear

1Tn UPts, a superconductor with nodes in the gap, the linear term expected from theory is kp/T =
14 mWEK2cem™ ! and ke/T = 1.9 mW K2 cm™ " for the heat current in the b and c¢ directions
respectively. The observed linear terms are much smaller, being &3/T = 0.15 mW K2 cm ' and
ke/T = 0.0 mW K2 em™! [51]. However, the cubic term observed at low temperatures are b, =
800 mW K—4 cm™ ! and b, = 1400 mW K~ cm ™", which are one or two orders of magnitude too large
for being phononic in nature. The thermal conductivity is thus clearly electronic at low temperatures
although a clear linear term is not observed. This result is still ill-understood [33]. Note that the theories
used for the estimates are based on the assumption of a single Fermi surface sheet, which is not the case
for UPtg3.
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Figure 5.4: Temperature dependence of thermal conductivity at several applied fields, plotted
as k/T vs T?%, for (a) H =0, 0.3, 1.5, 4, 6 and 8 T, and (b) H = 0, 50, 75, 100, 200 and
300 mT, in increasing order. The solid line is given by Lo/po(H =8 T).

in temperature, and we cannot resolve the phononic contribution (phonons are strongly
scattered by an increased density of electrons). Above Hy, ~ 7 T, in the normal state,
the WF law is perfectly satisfied as can be seen in Fig. 5.4: the solid line is the value
expected by the WF law with po(H =8 T) = 1.67 u) cm.

Given this well-understood behavior of «.(T") and k,n(T), it is straightforward to ex-
tract the electronic contribution k.(7"), by simply extrapolating /T to T' = 0. The result
of this extrapolation is plotted as x./T vs H in Fig. 5.5, where the field is normalized
to unity at He(0) and x./T to its normal state value £y /7. One immediately notices
the sudden onset of k at low fields leading to a large amount of delocalized quasiparticles
throughout the vortex state of LuNi;B,C. This would seem to provide a natural explana-
tion for the observation of de Haas-van Alphen oscillations down to unusually low fields
(Hc2/5) in YNipBoC [124, 125, 150], a close cousin of LuNiyB,C, with T, = 15.5 K and
H,=65T.
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In fact, the growth of quasiparticle conduction starts immediately at H, ~ 60 mT
(see Fig. 5.2d) and is seen to be roughly linear in field (see Fig. 5.5b). This is in dramatic
contrast to the behavior of quasiparticles in s-wave superconductors with a large finite
gap for all directions of electron motion. For comparison, we show in Fig. 5.5a the
electronic conductivity of Nb measured at 2 K (i.e. 0.22 T,) [20]. In an isotropic s-wave
superconductor, the only quasiparticle states present at T <« T, are those associated
with vortices. When vortices are far apart, these states are bound to the vortex core and
are therefore localized and unable to transport heat, thus contributing to the specific
heat but not to the thermal conductivity. As the field is increased and the vortices
are brought closer together, tunnelling between states on adjacent vortices will cause
some delocalization. This conduction is expected to grow exponentially with the ratio of
intervortex separation to vortex core size (~ 2£), namely as exp(—« \/m ), where «
is a constant of order 1, as is found for Nb at fields below H./3 [164] and in V3Si (see
Chapter 4).

In the presence of nodes in the gap, the dominant mechanism for quasiparticle trans-
port in the vortex state is completely different: conduction results from the population
of extended quasiparticle states in the bulk of the sample, outside of the vortex cores.
The excitation of these quasiparticles proceeds via the Doppler shift of their energies as
they move in the presence of the superfluid flow circulating around each vortex as seen
in Chapter 2. Because, near the nodes, such states exist down to zero energy, the growth
in the zero-energy quasiparticle density of states starts at H,;, with a characteristic v H
dependence [90]. This leads to a V'H dependence of the specific heat at low temperature,
as observed, for example, in the cuprate superconductor YBa;CuzOy [101, 89].

Note that the same mechanism will operate for an anisotropic s-wave gap if the field
is such that the Doppler shift exceeds the minimum gap in the quasiparticle spectrum.
In addition, these excitations will be delocalized. Heat transport has the advantage over
heat capacity of probing exclusively such quasiparticles.

The effect of vortices on quasiparticle transport in an unconventional superconductor
with a line of nodes in the gap function was studied in beautiful detail by Suderow and
co-workers [51]. Their measurements of x(T, H) in UPt; yield a roughly linear increase
of ke/T at T — 0 with H, shown in Fig. 5.5. The data is for a heat current in the basal
plane of the hexagonal crystal structure, which probes the equatorial line node in the gap
function of UPt3, established by transverse ultrasound attenuation [165]. Fig. 5.5 reveals

that quasiparticle conduction in the basal plane of LuNiaByC is as good as in UPt; (or
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Figure 5.5: (a) Magnetic field dependence of the electronic thermal conductivity k/TatT — 0,
normalized to its value at Hge. Circles are for LuNisB,C, squares for UPt3 [51] and diamonds
for Nb [20]. Note the qualitative difference between the activated conductivity of s-wave su-
perconductor Nb and the roughly linear growth seen in UPt3, a superconductor with a line
of nodes. The lines are a guide to the eye. (b) Field dependence of the electronic thermal
conductivity x/T at T — 0 at low fields, normalized to its value at He. For LuNisB5sC, the
growth is linear and starts at H;, as emphasized by the solid line. The growth is equally rapid
for UPt3 [51]. The equivalent data for the s-wave superconductor V3Si shows a much slower

growth.

even better). At low fields, the growth in the residual linear term xo/T = (k/T)r—0 is

also linear in H, starting at H:

Ko LoH—Ha o)
T po  He
where pq is the zero-field normal-state resistivity. This is vastly more conductive than a
typical s-wave superconductor. For example, electronic conduction in V3Si, an extreme
type-II s-wave superconductor with comparable T; (16.5 K) and & (45 A), is 20 times
weaker at H = 0.05 H,, as seen from data shown in Fig. 5.5b.

In both LuNisB,C and UPts, the thermal conductivity is roughly linear in H and
the heat capacity follows approximately a Vv'H dependence. The latter is naturally un-

derstood in terms of a density of states which is linear in energy (coming from nodes or

minima). It has recently been derived by Maki and coworkers that the thermal conduc-
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tivity for a gap with point nodes and in the ultra-clean limit would indeed be linear with
respect to magnetic field [166]. Although an interesting result, it is doubtful that this
regime of purity applies to our sample *.

Nohara et al. [153] and Izawa et al. [155] have attributed the v/H dependence of the
specific heat they observe in YNiyB,C to a Doppler shift of the quasiparticle spectrum
as in a d-wave superconductor [91] but applied in this case to a highly anisotropic s-
wave gap, with a small minimum gap Ap;,. Interpreting the thermal conductivity data
in the same way yields an estimate of A,;,. Indeed, because quasiparticle conduction
starts right at H., the minimum gap must be smaller than the Doppler shift energy
Ey at Hy. In a superconductor with a line of nodes in the gap, the average Ep is
given by ~ A¢\/B/Bg [91] where B is the magnetic field inside the superconductor and
B ~ He. At Hy, B ~ 0 in a type II superconductor thus possibly implying a true
zero in the gap. A conservative upper bound on the minimum field required to excite

quasiparticles above A, uses B = H,;. This gives:

Amin S EH(Hcl) ~ Ao\/ Hcl/Hc2 ~ A0/10 . (52)

In other words, there is a huge gap anisotropy, with a minimum in the basal plane
(the direction of heat current) 2. A factor 10 in gap anisotropy is unprecedented for
an s-wave superconductor, with a factor of 2 being the most ever inferred in elemental
superconductors {29]. Note that a gap variation of a factor of three is inferred for NbSe,
as will be discussed in Chapter 6.

In summary, the thermal conductivity is seen to grow linearly with field and to start
at the very lowest fields, namely, H.. This behavior is strikingly different from that
of an s-wave superconductor such as Nb or V3Si but rather, is very similar to that of
UPt3, a superconductor with lines of nodes in the gap. These results were the first to

unambiguously prove the presence of highly delocalized quasiparticles throughout the

Indeed, an estimate of the purity is given above with the standard relation between the Pippard
coherence length and the mean free path £y /l. It can be reformulated in the language used by Maki et
al. and gives AI'/A ~ 1 where I' = 1/27y (with 7y = l/vF being the mean scattering time). Here we
used the same values as earlier, namely, vp = 3.5 cm/s, | =270 A and A = 2.2 meV. This is far from
the ultra-clean regime of AI'/A « 1.

2It is interesting to note that a transformation from a hexagonal to a square vortex lattice occurs in
LuNi;B;C near H = 0.1 T [167]. In the context of a gap with a large anisotropy, non-local corrections
will play a major role for quasiparticles in the direction of the gap minima and the local density of states
will be different for both geometries of the vortex lattice. However, the spatial average of the density
of states should not be affected as found for a p-wave order parameter [168]. For this, the thermal
conductivity will not be affected either by such a transition.
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vortex state of LuNipgB2,C [92]. Previous results showed that this was the case only
on parts of the Fermi surface as dHvA oscillations were seen to persist deep into the
vortex state [124, 125, 150]. Also, indirect indications were given by heat capacity and
electromagnetic vortex response [155]. However, the absence of a residual linear term in
thermal conductivity in zero field indicates the absence of electronic excitations, which
leads us to conclude that the gap function has no topological zeros, but rather has a
very strong anisotropy of at least a factor of ten. This agrees with the conclusions of
previous heat capacity [141, 153, 155], microwave impedance [169, 155], photo-emission
spectroscopy [156] and Raman scattering [170] studies. Further work also supported these
results and helped to understand the nature of the gap [152] and of the superconducting

mechanism in borocarbides [100]. These will be discussed below.

5.2.2 Other evidence of an anisotropic gap

Indirect evidence of an anisotropic gap in borocarbides was reported prior to our work
on LuNiyB,C, and more direct (and very convincing) evidence was unveiled afterwards.
We review these studies critically and conclude that the body of evidence that now exists

for a strongly anisotropic gap in the non-magnetic borocarbides is substantial.

Early reports

Several probes which can offer key signatures for an unconventional gap did show early
evidence. However, more often than not, these results were obtained for temperatures
that did not reach T,/10 and stayed inconclusive. This problem had plagued the field of
high-T, superconductors in their early days with many reports of s-wave behavior from
measurements at insufficiently low temperatures.

It is worth noting that Raman measurements did show scattering below the gap as is
seen for HTSC [170]. Nuclear Magnetic Resonance measurements of the relaxation rate
1/T; were first thought to display BCS behavior. The results were different though when
the measurements were extended to lower temperatures (7,/50) and showed power law
dependencies, suggestive of an unconventional gap [171].

Studies of de Haas-van Alphen oscillations observed extended quasiparticle states
deep into the superconducting state (H/5) [124, 125]. The quantum oscillations were
seen not to be attenuated as strongly below H.,, as they are in V3Si [114, 116]. Although
there has not been a thorough study of the different models proposed to explain dHvA
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oscillations in the vortex state (for a review, see [116] and [68]), the one proposed by
Tesanovié and co-workers [110] was used to fit one set of data, and was successful at
doing so . However, the presence of oscillations in the vortex state was only revealed on

small parts of the Fermi surface.

Effect of disorder

A powerful tool for exploring unconventional superconductivity is to introduce disorder
in a system. This is usually done by substitution. In the case of borocarbides, Pt
and Co have been used to replace Ni: R(Ni;_;S;)2B2C with R=Lu,Y and S=Pt,Co
[144, 149, 154, 153]. The response to disorder is substantially different for gaps with and
without topological nodes. For example, superconductivity is destroyed by the presence
of non-magnetic impurities for a superconductor with topological nodes (see for example
[86]) whereas it has no effect on s-wave superconductors. Another key feature lies in the
fact that an anisotropic gap with no topological nodes will see its anisotropy decrease with
increasing disorder, whereas topological nodes cannot be removed [79].

In the case of borocarbides, the substitution of Ni by Pt or Co has the effect of
decreasing the transition temperature significantly [144, 149] as one may expect for a
superconductor with topological nodes. However, this suppression of T, is due to the
effect of a decreasing density of states in the case of Y(Ni;—,Co,)2B2C [144] (and probably
for Lu(Ni;_,Co,)2B2C as well). However, heat capacity [153, 154] and photo-emission
spectroscopy [156] studies have compared the behavior of pure and impure borocarbides
to conclude that the gap anisotropy was suppressed with disorder and that the gap did

not have topological nodes.

Heat capacity Nohara and co-workers compared the effect of disorder on the specific
heat for Y(Ni;_,Pt;)2B2C with several levels of disorder [153, 154]. In zero field, the
temperature dependence was shown to go from a T3 behavior for the clean sample to an
exponential one in the impure sample as shown in Fig. 5.6 [153]. In field, the behavior

went from a v H dependence in the pure sample to a linear one in the impure sample.

1The parameters that were obtained from this analysis were later used by Dukan et al. [72] to
calculate the thermal conductivity in the vortex state of borocarbides with no free parameters. This
reproduced surprisingly well our own results on LuNiyBoC presented above [92] although it could not
explain the presence of delocalized quasiparticles at fields down to H.;. Indeed, measurements in a
magnetic field are most conclusive (in obtaining an energy scale) at fields much below H, where the
Doppler shift energy is sufficiently small.
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Figure 5.6: (a) The temperature dependence of the electronic contribution to the specific heat
for Y(Nij_;Pt;)2B2C with £ = 0.0 and =z = 0.2 in zero magnetic field [153]. The temperature
dependence of the clean sample is cubic in temperature while it is exponential for the dirty
one. (b) The field dependence of the electronic specific heat. The clean sample shows a v H

dependence while a linear dependence is recovered with increasing disorder.

This crossing from the typical behavior of unconventional superconductors to more BCS

behavior is interpreted as evidence for an anisotropic s-wave gap.

Photo-emission spectroscopy A high resolution photo-emission spectroscopy study was

performed on samples with 0% and 20% Pt [156]. Both samples show a typical super-
conducting coherence peak below T, and the opening of a gap (see Fig. 5.7a). However,
the lineshape in the superconducting state (7' = 6 K) is best fit with a anisotropic gap
function which is parameterized by a maximum and minimum gap (Apme, and Aqy).
The best fit gives values of A5 = 2.2+£0.2 meV and A, = 0.04+0.2 meV for the pure
sample and Ay = 1.5 £ 0.2 meV and Qg = 1.3 + 0.2 meV for the dirty sample (see
Fig. 5.7b). The anisotropy is concluded to be reduced by disorder, another indication

that there are no topological nodes in the gap function !.

1 Although this unprecedented energy resolution does unambiguously show the opening of a gap in
the energy spectrum below T, one may be skeptical about these measurements -if only in principle-

being able to resolve the kind of anisotropy that are claimed. However, the evidence for a difference in
the level of anisotropy is convincing [156] although the numerical values quoted may be questioned.
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Figure 5.7: (a) Photo-emission spectroscopy lineshapes of Y(Nij_,Pt;)2B2C with £ = 0.0 and
z = 0.2 [156]. Below T, the typical superconducting coherence peaks appear and a gap opens
for both samples. (b) The lineshapes are best fitted with an anisotropic gap parameterized by
a maximum and a minimum value of the gap. The fit gives a much smaller gap minimum for

the pure sample.

The effect of disorder has proved to be very useful in the case of borocarbides and

seem to indicate that the gap, although anisotropic, does not have topological nodes.

Tunnelling Spectroscopy

Tunnelling spectroscopy gives direct access to the energy gap. However, early tun-
nelling spectroscopy measurements were performed only at temperatures above 4.2 K
[172, 23, 24]. This factor among others had the effect of broadening the spectra and
even showing a non-zero density of states at zero energy. Although fits to a BCS gap
were successful, no anisotropy of the gap could be resolved. However, recent Scanning
Tunnelling Spectroscopy (STS) measurements at lower temperatures (T,/30) and with a
high energy resolution were performed on both LuNiyBC and YNiyB,C [100].

Martinez-Samper et al. saw a large anisotropy in the superconducting gap as shown
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Figure 5.8: (a) The tunnelling spectra for LuNiaBoC (left) and YNigBoC (right) at T = 0.5 K =
T./30 [100]. The gap is seen to deviate strongly from a simple BCS shape (black lines) and is
consistent with a highly anisotropic gap. (b) The temperature dependence of the mean value of
the superconducting gap at different locations on the sample. Inset: The anisotropy parameter

€ -using a gap of the form A = Ay(1 + € cos(40))- as a function of T, and normalized to the

average gap Ag.

in Fig. 5.8a. One can see that the conductance departs from zero around 0.8 meV and
peaks around 2.6 meV for LuNi;B,C and 2.3 meV for YNi;B,C on these figures. The
tunnelling spectra was also found to be different at different positions on the sample. The
average gaps were found to be different. These were fit to a BCS temperature dependence
with different T; (see Fig. 5.8b). This indicated that different sites were locally more or
less disordered. The spectra were seen to change accordingly: a reduced anisotropy was
found at the sites with lower T, a direct indication that the gap anisotropy is reduced
with disorder. This is seen in the inset of Fig. 5.8b. There, an anisotropy factor was used
to fit the tunnelling spectra (using a gap of the form A = Ag(1+ € cos(46)) as described
in reference [21]) and is plotted against the observed local T,. However, as pointed out
by the authors, STM spectra only probe a part of the Fermi surface and may not give
the full distribution of gap values of these systems. However, it does undeniably present

direct evidence for an anisotropic gap.
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Figure 5.9: (a) The thermal conductivity of YNiagBoC with a heat current along the [001]
direction and at H =1 T as a function of field orientation. At § = 90°, a fourfold oscillation is
observed whereas it is not for § = 45° [152]. (b) Theoretical predictions for point nodes and line

nodes [152, 166]. The experimental behavior shows conclusive evidence for point-like minima.

The shape of the gap

A directional probe is needed to obtain further information about the shape of the gap.
Indeed, it is interesting to know where the minima in A are whether they resemble point
nodes or line nodes. For HT'SC, Angle Resolved Photo-Emission Spectroscopy (ARPES)
has proved to be ideal for this task [87], but it is unfortunately not suited for compounds
that have 3D electronic properties. Ultrasound attenuation studies were key in the case
of UPt; (for example, see [33]) and SroRuOy [173]. An alternate approach is to measure
thermal properties such as heat capacity or thermal conduction in a magnetic field as
a function of the angle at which the field is applied with respect to the sample. Such
studies were performed on the borocarbides and give insight on the nature of the minima
in the gap.

The thermal conductivity of YNi;BsC was measured with a heat current along the
[001] direction and as a function of field angle [152]. The authors found that, in addition
to having a similar behavior of x as a function of field, as found in LuNi,B,C [92], the
dependence on the direction of the applied field was consistent with point nodes along

the [100] and [010] directions. They found a fourfold oscillation for a field rotated with
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Figure 5.10: The heat capacity as a function of both field and angle of the applied field
C(H,angle)/C(H, angle = 0) after [174]. A numerical calculation shows the behavior expected
for quasiparticles in a 3D system with nodes as shown in (a). The experimental data is in good

agreement as shown in (b).

respect to ¢ for § = 90°, but saw no change in & for § = 45° (see Fig. 5.9), consistent
with theory for a point node rather than a line node [152, 166]. Note that the authors
emphasize that these would be ”point-like minima” and not topological point nodes, in

agreement with the idea of a highly anisotropic gap, rather than an unconventional gap.

One should note that Izawa et al. [152] gave a misleading estimate of the gap min-
imum. Their estimate comes from the fact that they resolve an oscillation down to
T = 0.3 K whereas the average gap is of the order of 1.57 kg7, ~ 30 K, yielding a
factor of 100 anisotropy. However, the measurements are performed in a magnetic field
of 1 T, which gives rise to a severe Doppler shift of the quasiparticles of the order of
Eyg = \/EI—/—H; A ~ LA. So they are not able to access energies lower than Ey.

A similar study of the magnetic field orientation dependence of the heat capacity has
recently reported a fourfold anisotropy indicative of nodes in the same directions ([100]
and [010]) as shown in Fig. 5.10 [174]. From this measurement, Park and co-workers
conclude that the gap has true topological lines of nodes, rather than pointlike ones.
However, the body of evidence that exists against the presence of actual nodes (found
by disorder studies, thermal conductivity and STS measurements) is in their disfavor.
Nevertheless, these results do raise questions about the exact shape of the anisotropic

s-wave gap (point-like minima or line-like minima).
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The source of the anisotropy

It is natural to wonder what could be the cause of such a pronounced gap anisotropy.
Recall that borocarbides exhibit Fermi surface nesting with a wavector near [0.5,0,0], and
that a softening of phonon modes below T, is associated with it. This nesting applies to
the [110] direction of the third F'S sheet (see Fig. 5.1b) [137]. Maki et al. have suggested
that this may be the source of a suppressed pairing potential (and consequently a smaller
gap) along the [110] direction [166]. However, the minima in the gap seem to be along
the [100] direction as found from thermal conductivity and heat capacity measurements

[152, 174]. This is puzzling and will certainly be the source of further theoretical work.

Summary A considerable body of evidence exists which shows unambiguously that the
gap function is strongly anisotropic [92, 153, 154, 156, 155, 152, 100]. Our thermal
conductivity data shows that the gap has no topological nodes. In addition, the shape
of the gap is known to have its minima along the [100] and [010] directions, although it
is not yet entirely clear whether these minima are point-like [152] or line-like [174]. This
is not understood by the natural idea that the pairing potential is suppressed along the
nested parts of the FS (namely along [110] [137, 166]). One is naturally brought to the

question of the mechanism for superconductivity in these non-magnetic borocarbides.

5.3 The mechanism for superconductivity

A gap function with topological nodes is invariably associated with an unconventional
pairing mechanism. In the case of the borocarbide superconductors, the possibility of
an electronic pairing mechanism has been brought up by several authors [175, 141, 92,
152, 174]. However, with strong evidence against the existence of topological nodes, one
is tempted to conclude that the pairing mechanism is phononic. We will show here the
argument made by Martinez-Samper and co-workers on the basis of STS experiments
which argues that the pairing is phonon-mediated [100].

Very early on, Carter et al. concluded that the pairing mechanism was phononic
simply on the basis of the plot of T; vs 7yn, the normal state electronic specific heat [142].
Also, a large isotope effect was observed (see for example [151]). More detailed studies
require an analysis with the strong-coupling Eliashberg theory, as described by Carbotte
[176]. Several authors [140, 177] have argued that such a standard Eliashberg analysis
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Figure 5.11: (a) The tunnelling spectra for RNisB2C (R=Lu,Y) at high energy in the super-
conducting state. A distinctive dip is seen around E = 6 meV (as seen by the percentage of
times the dip was seen as a function of its energy) [100]. This corresponds to the energy A+ hw
where hAw is the energy of a phonon mode which softens below T, at an energy of 4 meV as seen

in (b) [147].

of H.(T) and resistivity leads to a quantitatively satisfactory and consistent description
of LuNi;B,C in terms of the measured phonon spectrum and a largely isotropic gap
function. However, it remains to be seen whether such an analysis survives the inclusion
of a very anisotropic gap.

More recently, direct evidence for phonon-mediated superconductivity was provided
by tunnelling spectroscopy [100]. One expects to find the signature of the bosonic mode
(phononic or electronic) responsible for the pairing mechanism at an energy A + Aw
where A is the energy gap and hw is the energy of the phonon mode. Indeed, a feature
is revealed at an energy of 6 meV for both LuNi,B,C and YNi;B,C as can be seen in
Fig. 5.11a. Knowing that the gap has an approximate value of 2 meV, this leads to a
phonon mode at 4 meV which is precisely the energy of the mode that softens in the
superconducting state [146, 147, 148]. This is shown in Fig. 5.11b where the intensity of
this mode (at 4 meV and momentum wavevector [0.5,0,0]) starts to increase at T,. It is
concluded that this phonon mode in particular is responsible for the superconductivity
in borocarbides, although other higher energy phonon modes may also play a role in the

pairing.
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This conclusion represents a clear warning for the study of novel superconductors
where unusual temperature and field dependences are often prematurely associated with

an unconventional pairing mechanism.

5.4 Conclusion

In conclusion, we have presented a study of the thermal conductivity through the vortex
state of the borocarbide superconductor LuNiyB,C which has provided unambiguous ev-
idence for the existence of highly delocalized quasiparticles down to the very lowest fields
[92]. This shows the presence of a gap which is strongly anisotropic with a gap minimum
at least 10 times smaller than the gap maximum. A more complete review has shown
other evidence that this is the case for both the non-magnetic members of the borocarbide
family: LuNiyB2C and YNiyB,C. However, even with this strong anisotropy, it is found
that the nodes (or minima) are not topological and the anisotropy is strongly reduced
with disorder. The position of the minima are in the [100] and [010] directions, although
there is still controversy about whether they are point-like or line-like. It is tempting
to associate this unprecedented anisotropy to a pairing mechanism which is electronic in
nature. However, a low energy phonon mode which softens in the superconducting state
is most likely responsible for the pairing mechanism.

The source of the strong gap anisotropy is yet to be understood. One natural ex-
planation involved a reduced electron-phonon coupling from a partly nested FS, which
incorrectly predicted the gap maxima rather than minima to be in the [100] and [010]
directions. A more rigorous theoretical treatment may be necessary to understand the
strong gap anisotropy.

In the general study of novel forms of superconductivity, the borocarbides offer a useful
point of comparison, as the most dramatic example of conventional superconductors with
a highly anisotropic gap, relative to unconventional superconductors with true topological

nodes in the gap.
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Chapter 6
NbSes: a multi-band superconductor

Multi-band superconductivity (MBSC) is the existence of a superconducting gap of signif-
icantly different magnitude on distinct parts (sheets) of the Fermi surface. This unusual
phenomenon has recently emerged as a possible explanation for the anomalous properties
of some s-wave superconductors. Although the first experimental observation of MBSC
was reported twenty years ago [178], the possibility of MBSC has not often been raised
since then. The current interest has been fuelled by the peculiar properties of the 40-
K superconductor MgB,, where the case for MBSC is now rather compelling [179]. In
particular, a gap much smaller than the expected BCS gap (of order kgT;) has been
resolved in tunneling experiments [180, 181, 182, 25]. A consequence of this small gap is
the much more rapid excitation of quasiparticles (with temperature or field) than usual.
This can make the properties of this s-wave superconductor similar to those of d-wave

superconductors, for example.

Based on angle-resolved photoemission (ARPES) measurements, it has recently been
proposed that the 7-K layered superconductor NbSe, is also host to MBSC [183]. They
reveal a sizable difference in the magnitude of the superconducting gap on the two sets of
Fermi surface (FS) sheets, with no observed gap on the smallest sheet. These conclusions
are supported by our recent studies of heat transport [55] which provide bulk evidence at

temperatures much below T, and are consistent with several previous anomalous reports.

In this chapter, we will give a brief review of multi-band superconductivity before

reviewing the case of NbSe,.

117
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6.1 A brief introduction to MBSC

Multi band superconductivity (MBSC) was first reported in 1980 in SrTiOj3 [178]. Since
then, little work was done on the topic until its recent re-emergence with the discovery
of MgB; for which the case for MBSC is very strong [179]. We will review briefly some
important properties of a superconductor which displays MBSC, namely, the gap func-
tion, the behavior in a magnetic field and the source of this effect. A good review of the

properties of MgB, and of the physics of MBSC can be found in [30].

The mechanism

Although most materials have a complicated Fermi surface, often with several sheets, it
is common to disregard this complexity and treat the material as having a single isotropic
Fermi surface and a single superconducting gap. There is a good reason to do this as
Fermi sheets are usually strongly coupled by interband scattering, i.e. the quasiparticles
and the Cooper pairs can easily scatter from one band to another. This leads to a gap of
the same magnitude on all Fermi sheets. MBSC is the presence of superconducting gaps
of significantly different magnitudes on two (or more) sets of Fermi surfaces. For this to
occur, it is required that these be decoupled. In the extreme case that the two bands
are not coupled at all, one of the FS will not display superconductivity. More likely
though, superconductivity will be induced onto the other FS but will have a smaller gap
associated with it. It should be noted that within this picture, disorder will have the
effect of coupling the FS increasingly as impurities (which are scattering centers) will
facilitate the scattering between bands. In turn, this should wipe out the MBSC. We can

view MBSC as occurring only if the two following conditions are satisfied:

e The coupling between two sets of Fermi surface sheets is weak.

e Superconductivity occurs naturally on one of these sets but not the other.

The physical mechanism leading to the first condition being satisfied is not yet clearly
known. Speculations include the different dimensionality of the different sheets but fur-
ther work will be required to answer this question. The second condition has been verified
in MgB, where the electron-phonon coupling strength has been found to be three times
larger for the 2D o orbits than for the 3D 7 ones [184, 185]. In this chapter, we will

concentrate instead on a simpler task, namely that of knowing whether a superconductor
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Figure 6.1: (a) Both superconducting gaps as a function of temperature and magnetic field
for a two-band superconductor. (b) The temperature dependence of both gaps in MgB, as

determined by tunneling (from [180)).

displays MBSC or not. Indeed, it has only been reported in doped SrTiOjz, MgB, and
NbSe; while unconventional MBSC has been proposed for SroRuQ, [186, 187, 188].

The Properties

The case for MBSC is well established in the 40 K superconductor MgB,. For this, one
can view the extensive literature relevant to MgB, as a reference point of the properties
of a MBSC. We will first emphasize the behavior of the two gaps as a function of tem-
perature and magnetic field as illustrated on Fig. 6.1. The small gap does opens at T,
but has a smaller zero temperature value. In a magnetic field, superconductivity will be
destroyed more easily for the Fermi surface with a small gap. In other words, a second
field scale (remembering that H. o< A?/v%) and, in turn, another length scale (since
£ x 1/v/Hzy o< vp/A) is associated with the small gap. Note that the small gap does
not go to zero at some different upper critical field as this would indicate the presence
of two superconducting phases. This phase diagram was confirmed as a function of tem-
perature directly by scanning tunneling spectroscopy (STS) measurements, for example
(see Fig. 6.1) [180]. In a magnetic field, indirect evidence exists from heat capacity [189]
and thermal conductivity [99] which show a distinct shoulder near this characteristic
field. Also, the associated length scale was observed by imaging vortex cores [25] and

was subsequently explained by Koshelev and Golubov with such a phase diagram [190].
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From this basic idea, one can obtain the behavior both in temperature and magnetic
field of most properties of MgB, such as heat capacity, tunneling, thermal conductivity,
angle resolved photoemission spectroscopy (ARPES) and many more. We will not review
these in detail as the literature is already rich and is much beyond the scope of this section.

We will now turn our attention to NbSe, where there is an increasing body of evidence
in favor of MBSC. We will also briefly address the two conditions to obtain MBSC to see
that they may be satisfied.

6.2 NbSeg

NbSe; is a well characterized s-wave superconductor with a relatively high transition
temperature T, ~ 7 K. It is an extreme type II superconductor with H. ~ 4 T for H || c
(and k = X(0)/£(0) is between 5 and 30 as measured by pSR [191] such that £ > 1).

After reviewing its properties, we will present the case for MBSC in NbSes.

6.2.1 Crystal structure

NbSe; is a layered material with a hexagonal crystal lattice (see Fig. 6.2a) and parameters
a =345 A and ¢ = 12.54 A. The layers are weakly coupled via van der Waals interactions
which leads to crystals that are easily cleaved in the c direction. This structural property
has been a key feature in the study of NbSe, as it gives the possibility of obtaining clean
and atomically flat surfaces. Because of this, several powerful surface probes such as STS

and ARPES have been applied successfully.

6.2.2 Normal state properties

NbSe; is a quasi-2D metal which is seen to display a transition to a charge density wave
(CDW) state around T ~ 35 K. The resistivity is strongly anisotropic with a ratio of the
in-plane to out-of-plane resistivity pg/p. around 30 from room temperature to 80 K [193].
At low temperatures, the anisotropy of the ideal resistivity decreases to a factor of 10
although the residual resistivity for the same crystals give poc/poss =~ 500/10 = 50 [193].
The effective mass is nine times smaller in the plane than in the ¢ direction [194]. Its
Fermi surface has been measured at low temperatures by both the de Haas-van Alphen
effect (dHvA) [192] and ARPES measurements [183]. These agree with band structure

calculations which derive a Fermi surface made of a number of sheets (4 or 5), shown
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Figure 6.2: (a) The crystal structure of NbSe; is layered and hexagonal with lattice parameters
a=3.45A and ¢ =12.54 A. (b) The three Fermi surface sheets of NbSe; as derived from band
structure calculation [192]. At the top is a Se 4p derived I' centered pocket which has a more
3D nature than two other highly 2D Nb 4p derived sheets.

in Fig. 6.2b. These sheets divide into two groups: a small I'-centered pocket derived
from the Se 4p band (denoted as I" band from now on) and larger more two-dimensional
sheets derived from Nb 3d bands. The average density of states at the Fermi level is
calculated to be N(Er) = 2.85 states/eV/Nb = 2.71 x 10?2 states/eV /cm? [192] and the
average Fermi velocity is vp ~ 1.5 x 107 cm/s [114]. This leads to a calculated electronic
specific heat of v = 6.7 mJ mole™! K2 which should be compared to measured values
of v ~ 18 mJ mole™! K2 [195, 191, 154]. The Debye temperature derived from heat
capacity is ©p = 230 K [195].

The resistivity is roughly linear at high temperature and reaches a behavior close to
p(T) = po + bT? for temperatures below 20 K (see [196] for example). This temperature

dependence can be understood in terms of electron-phonon scattering [197]. p(T') displays
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T, Hg Heal Hy §1(0)  &1(0) A(0)
NbSe;, 72K 4T 11-12T 2025mT 8 A 5560 A 1400 A

Table 6.1: Superconducting parameters for NbSe; taken from the literature. The upper critical

fields are obtained from H.s and A(0) from muon spin resonance [199].

the signature of a CDW at T ~ 35 K: in the case where the FS is fully gapped in the
CDW state, one should observe localization of the carriers. Here, the gap is incomplete
and the resistivity only has a small bump (see Fig. 6.3a). The residual resistivity can
give a good estimate of the mean free path. We obtain pol = 2300 2 cm A using the

relation pol = and the values above *.

3
2e2N(Erp)vrp

6.2.3 Superconducting state properties

The superconducting properties are also anisotropic. For example, the upper critical field
has a three-fold anisotropy [198, 194] for a field applied perpendicular or parallel to the
plane. Values from the literature are presented in Table 6.1.

The BCS coherence length is another significant parameter for the vortex state. It is
usually compared to the mean free path of a sample to know whether it is in the clean or
dirty limit. This has been done by Prober et al. [194] and by Takita and Masuda [200]
with samples of similar quality. They both obtain &;/! = 0.15 which places the sample
in the clean limit.

NbSe, is an s-wave superconductor in the sense that the FS is fully gapped, and the
pairing mechanism is most likely mediated by phonons. This has lead many authors to
believe that its superconducting gap was uniform and isotropic. Instead, we will show
that there is now much evidence for the occurrence of MBSC and that NbSe, has a small

gap on the I'-pocket and a BCS-type one on the rest of the FS.

6.3 The case for MBSC in NbSe,

In the past ten years or so, there have been several unusual reports in NbSe,. STS
studies at 50 mK resolves a density of states which departs from zero near 0.7 meV but

has superconducting peaks near 1.4 meV (see Fig. 6.10) which indicates some level of

Note that using the relation pol = ;3;-5—1% gives a similar value of pol = 1700 u cm A.
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gap variation (1991). The vortex core radius was measured to change as a function of
magnetic field [199] and temperature [201] (1997). The magnetic field dependence of the
heat capacity was found to have a low field anomaly [191, 154, 195] reminiscent of the
v/ H behavior found in d-wave superconductors (1995). dHvA oscillations were found to
persist deep in the superconducting state with an unusually small additional damping
[114, 116] (1994). In 2002, ARPES measurements showed direct evidence for MBSC in
NbSe, [183]. We were able to confirm this claim by thermal transport measurements in
the vortex state at low temperature [55] (2003). This new evidence and interpretation
gives a natural way of understanding the prior unusual behavior reported.

We will review these reports and explain them in the context of MBSC, starting with
the heat transport through the vortex state. This will also lead us to speculate on the

origin of this peculiar form of superconductivity in NbSes.

6.3.1 Thermal conductivity and specific heat in the vortex state

We have studied the thermal conductivity of NbSe; at very low temperatures throughout
the vortex state. By measuring the degree of delocalization of quasiparticle states in the
vortex state, heat transport probes the overlap between core states on adjacent vortices,
i.e. the size of the vortex core (~ §), and hence the magnitude of the gap (~ 1/£). We
resolve two regimes of behavior: one limited to very low fields (up to ~ 5H,;), where
delocalization is slow and activated as in conventional (single-gap) superconductors like
V3Si, and one for all other fields up to H., where quasiparticles transport heat extremely
well, as in unconventional superconductors with nodes in the gap. Note that in the case
of NbSe, the absence of any residual linear term in the thermal conductivity confirms

that there are no nodes in the gap.

Experimental details

The sample is from the same batch as the one used by Sonier et al. [191, 199, 201] and
had a superconducting transition temperature T, = 7.0 K with a width 67, = 0.1 K (see
Fig. 6.3a). The residual resistivity ratio is 40, with pg ~ 3 uQ2 cm from an extrapolation
to T — 0 of the form p = pg + T3 (with b = 3.1 x 1074uQ cm K~3). This dependence
describes the sample well for 7' < 20 K (see Fig. 6.3a). The upper and lower critical
fields are respectively Hep = 4.5 T and H; = 20 mT for H || ¢. Hy was determined
from the scattering of phonons by vortices at T = 900 mK (see Fig. 6.6c). As discussed
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above, the sample is in the clean limit with a ratio of the BCS coherence length &g to the
mean free path [ in the plane being & /1 ~ 0.15 [194, 200].

The crystals were grown by a standard vapor transport technique [202] and the sample
was a rectangular parallelepiped with dimensions 1.2 x 0.5 mm in the plane, and 0.1 mm
along the c-axis. It was cut with a razor blade and the top layers were cleaved by applying
and removing tape on these surfaces to provide six fresh surfaces for contacts. These
where made shortly after with Dupont 4929N silver paint to give contact resistances of
roughly 20 mQ at low temperatures. For the thermal conductivity measurements, the
sample was cooled in field to obtain a homogeneous vortex density. Measurements as a
function of field at fixed temperature resulted in nearly no difference as compared to the

field-cooled data (see Fig. 6.6a).

Thermal conductivity in zero field

The thermal conductivity was measured above 1 K (Fig. 6.3b). It agrees well with the
WF law above T, but decreases smoothly below. This is best seen by plotting «/T
and Lo/p(T) (extended to below T.) where the formation of Cooper pairs reduces the
thermal conductivity below T,. At low temperatures, x becomes purely phononic. The
absence of a phonon peak is easily understood as explained by the following scenario.
The phonons have two relevant channels of scattering: electrons and crystal boundaries.
Above T, electronic scattering dominates. Below T, this channel is reduced steadily
to zero as Cooper pairs are formed which usually leads to an enhanced k. However, it
will only increase until the mean free path reaches the crystal dimensions, leading to an
ultimate decrease of k. From this, a phonon peak is sometimes observed. In this case,
the same mechanism is at play, only the phonon peak is much smaller than the remaining
electronic contribution (unpaired electrons) due to the lower T, of NbSe,. It is therefore
not observed.

At low temperatures, s is purely phononic and has a temperature dependence close
to T3 (see Fig. 6.4). We can place an upper value on the electronic contribution of
k/T = 0.000 £ 0.003 mWK~2 em™! by fitting the data with x/T = a + bT2. This
should be contrasted to the value in the normal state (kn/T =~ 8.2 mW K~2 cm™!)
and to the expected value for a gap with nodes (for example, a d-wave gap) which is

0.55 mW K~2? cm~! !, both orders of magnitude larger than our upper limit.

1For a d-wave superconductor in 2D, we have kop/T = %2% (3) (35 + 72) [85]. We use the fact that
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Figure 6.3: (a) The resistivity of NbSe; as a function of temperature. Charge density wave
order is seen to onset near 7 = 35 K. Below T = 20 K, the resistivity has the form p = pg + b7
(inset). This sample has a sharp superconducting transition with T, = 7.0 K and 67, = 0.1 K.
(b) The thermal conductivity of NbSey above 1 K plotted as « and as x/T (inset). The latter
shows the resistivity (dark line) plotted as Lo/p(T) extended to below T, using p = pg + bT3.
k/T agrees well with the WF above T, and is reduced in the superconducting state by the
formation of Cooper pairs. (Note that the measured thermal conductivity was multiplied by
a small factor (0.93) to agree perfectly with the WF law at T,. This small discrepancy may
be due to our experimental accuracy which can overestimate the thermal conductivity by this

amount as seen in Fig. 3.14a).

Instead, let us estimate what the expected phononic contribution should be in the
limit of boundary scattering. We use equation 2.22 with a mean diameter of d =~
2 /w x t/m = 0.024 cm and a phonon velocity of vy, = 3.7 x 10° cm/s as reported
in the plane for NbSe; [203]. This predicts xy,/T° = 7.2 mW K™ cm ™" and is in good

agreement with our results which finds 4.0 mW K—* em ™.

In conclusion, the thermal conductivity at low temperature and in zero field is purely
phononic for NbSe,. This is a clear indication that the FS is fully gapped and has no

nodes.

hkpus = Ao/2 and hkp = m*vp to obtain koo/T = %k,zﬁ— ¥ (%:25) Usingd =12.54 A, n =1, m* as

the electron mass, vp = 1.5 X 107cm/s and A = 1.1 meV, we get koo/T =~ 0.55 mW K2 em ™!
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Figure 6.4: Thermal conductivity of NbSes in zero field and at low temperature. The
data is plotted as x/T against T2. The linear term is extracted to be x./T" = 0.000 +
0.003 mW K~2 cm ™" and the phononic term is b = 4.0 mW K4 cm™". ke/T zero within
our error bars, a clear indication of a fully gapped FS. The phononic contribution agrees quan-

titatively with the theoretical prediction for boundary limited scattering.

Thermal conductivity through the vortex state

In zero field, we saw that the thermal conductivity is purely phononic. We now turn to
the behavior in a magnetic field to see the growth of the electronic thermal conductivity
through the vortex state.

The thermal conductivity of NbSe; is plotted in Fig. 6.5, as x/T against T2. This
enables a separation of the electronic and the phononic thermal conductivities, since the
asymptotic T dependence of the former as T — 0 is linear while that of the latter is
cubic. The electronic thermal conductivity /7 is thus obtained as the extrapolated
T — 0 value. We saw above that in zero field, xo/T = 0.0004-0.003 mW K 2 cm™!, and
the thermal conductivity is purely phononic. However, by applying a small magnetic
field (H > H.), an electronic contribution develops as a rigid shift from the H = 0
curve in Fig. 6.5. At higher fields (H > 1.5 T), the electronic contribution dominates the
conduction over the entire temperature range and /T is constant in temperature within
our experimental resolution. Above H o, the Wiedemann-Franz (WF) law is satisfied and

the thermal conductivity saturates. Note that for H = 4.5 T, the residual resistivity is



6.3. THE CASE FOR MBSC IN NBSE, 127

°r 45T -
ah A A A o A A L A RO
Ada X FL ry —
—
IE 6_' v v 3.5T
G W T WY YT VY v v vy Ly LYY oy ,
b
¥
z T 15T 1
° o o
= Popu s 000000 0000 4 g5 4 00 .
- 0.7T
t 2_-*lllllllllll " " g m u & -0-3:’_ "
M WOOOOOOOOOOOOO o 0 0o O © e} o Q o o]
0 DDDD:DDDDDD DID =] a o a :D a Dof o

—
)
é %)
o -
o T
0
(s}
[e]
(e}
o
[e]
[e]
|

g 10 i
[} < X X
S 08 . x XX -
¥ o« x XX

= 06 o o 0 % °d
E o % OV % o & °

— 04 %% 0 " s
% 02 0, 50, 70, 100,

200, 300 mT
0.0 &= . .
0.0 ) 0.2

Figure 6.5: Thermal conductivity of NbSe; at several applied fields, plotted as x/T vs T2. The
solid line indicates the value expected from the Wiedemann-Franz law as obtained from resis-
tivity measurements at H = 4.5 T. The field is applied parallel to the c-axis and perpendicular
to the heat current Q.

measured to be po(H = 4.5 T) = 3.34 uf2 cm.

The ko/T values are plotted as a function of H on a reduced scale in Fig. 6.6. Also
plotted is a field sweep at T = 130 mK from which the zero-field value (the phononic
contribution) has been subtracted. Asseen in Fig. 6.6c, heat conduction starts to increase
right at H;; in what could be qualified as an activated behavior, although in a very limited
range of fields: Hy < H < 0.03H ;. (The value of H; is determined in situ as the drop
in the phonon x due to vortex scattering as shown in Fig. 6.6c.) At higher fields, xo/T
increases rapidly, i.e. faster than (H/Hy) kn/T, where sy /T is the normal state value.
This shows the presence of highly delocalized quasiparticle states almost throughout the
vortex state of NbSes.

This is in stark contrast to the behavior expected of a type-II s-wave superconductor.
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Figure 6.6: (a,b) Thermal conductivity of NbSes (empty circles) and V3Si (diamonds) at T — 0
vs H, normalized to values at H.y. Filled circles come from a sweep in field at T = 130 mK from
which the H = 0 thermal conductivity (phononic contribution) has been subtracted. The thick
solid line in (b) is a theoretical curve for the thermal conductivity of V3Si [72]. The thin line is
a guide to the eye. (c) k/T vs H for NbSez at T' = 130 mK (circles) and T' = 900 mK (squares).
The latter shows a typical drop in the phononic thermal conductivity at H, = 20 mT. The
former shows that the electronic thermal conductivity starts to increase right at Hg but has a

slow activated-like behavior for fields below 0.03 Hs.

Indeed, when a field in excess of H, is applied, and vortices enter the sample, the
conventional picture is that the induced electronic states are localized within the vortex
cores. As one increases the field, the intervortex spacing d =~ \/qTO/_E decreases. The
localized states in adjacent vortices will have an increasing overlap leading to enhanced
tunneling between vortices, and the formation of conduction bands. Strictly speaking,
the electronic states are actually always delocalized but with extremely flat bands at
low fields [67, 68]. As these gradually become more dispersive, the thermal conductivity
should increase accordingly and grow exponentially with the ratio d/2¢, as is indeed
observed in Nb [164] and V3Si (see Chapter 4) at low fields.
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In fact, V3Si is a good point of comparison for NbSe,. It is an extreme type-II
superconductor with comparable superconducting parameters (T, = 17 K, £ = 50 A).
This is done in Fig. 6.6, where the thermal conductivity of V3Si is seen to grow much
more slowly with H than that of NbSe,, as described by theory [72]. Quantitatively, at
H = H/20, ko/T = 5 % kn/T for NbSe, and g x kn /T for V3Si (see Chapter 4).
Note that the samples compared in Fig. 6.6 are in the same regime of purity. From
the standard relation £(0) = 0.74&,[x(0.88£4/1)]'/2, we obtain for V3Si &/l = 0.13, with
£(0) = 50 A from H,y and [ = 1500 A from dHvA [116]. This is similar to the value of
0.15 for NbSe, [200, 194]. Our results are consistent with dHvA measurements [116, 114]:
while extended quasiparticles are seen deep into the vortex state in both NbSe; and V3Si,
the additional damping attributed to the superconducting gap below H., increases more
slowly in NbSes.

The high level of delocalization in NbSe; is a clear indication of either a gap with
nodes (e.g. d-wave) or a nodeless gap which is either highly anisotropic or small on one
FS and large on another. A gap with nodes is ruled out by the absence of a residual term
in the thermal conductivity in zero field [81].

It is revealing to compare NbSey to MgBs, for which the thermal conductivity has a
similar field dependence. Strikingly, x follows roughly the same field dependence as the
specific heat C' for both NbSe; and MgB,. This is shown in Fig. 6.7 where «(H) and
C(H), are plotted on a reduced field scale for single crystals of NbSe, [191, 154], MgB,
[99, 189], and V3Si [122, 113], with H]||c for hexagonal NbSe, and MgB,, and H||a for
cubic V3Si. In conventional superconductors like V3Si, x(H) and C(H) are very different
(see Fig. 6.7c) because the excited electronic states are largely localized.

MgB; is a well established case of MBSC with a small gap on one FS (A, = 1.8 meV)
and a large gap on the other (A, = 6.8 meV). The field dependence of its heat capacity is
well understood in this context [189], with a distinctive shoulder at a field of H./10 (see
Fig. 6.7b) '. A similar shoulder is also manifest in NbSe, around H,;/9 (see Fig. 6.7a).
Empirically, the striking fact that heat transport and heat capacity have the same field
dependence in both materials points to a common explanation, and hence suggests that

NbSey is host to multi-band superconductivity 2. This is consistent with recent ARPES

' A similar shoulder was observed in SroRuQO4 [186], possibly host to unconventional MBSC [187].

21t should be noted that having such a similar behavior of the thermal conductivity and the specific
heat is not what is expected theoretically for either a MBSC or a superconductor with an anisotropic gap
in the case of superconductors in the clean regime (relevant for our crystals) as suggested by calculations
of Kusunose et al. [71].
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Figure 6.7: (a) Thermal conductivity and heat capacity of NbSes normalized to the normal
state value vs H/Hc. The heat capacity was measured in two different ways: i) at T'= 2.4 K
on the same crystals as used in this study [191], and ii) extrapolated to T — 0 from various
temperature sweeps on different crystals [153]. (b) Equivalent data for MgBg single crystals
[99, 189]. (c) Equivalent data for V3Si, with a theoretical curve for k/T [72]. The specific heat
is measured at T = 3.5 K [122] and extrapolated to T' = 0 [113]. The straight line is a linear
fit. The thermal conductivity is seen to follow the specific heat very closely for both NbSe,
and the multiband superconductor MgBs. It does not, however, for the conventional s-wave

superconductor V3Si.

measurements at 7' = 0.8 T, [183].

In conventional superconductors, the delocalization of vortex core bound states occurs
gradually on the scale of Hy, and the characteristic length scale is £(0) ~ \/m.
It appears that in NbSe; (and MgB,), there are two characteristic length scales for
delocalization: £* and £(0). To see this, we focus on the low field region. For NbSe,,
both /T and C/T have been measured with high precision on the same crystals, thereby
making a detailed comparison possible. Fig. 6.8a shows the comparison for fields below
H/10, where the two do not coincide: C/T increases abruptly above H, while x/T
grows slowly, in an activated way. This is consistent with the presence of localized states
at very low fields as imaged by STS (see Fig. 1.6) [18, 204, 205]. Then this behavior
gives way to a rapid increase of the thermal conductivity at fields above 0.03 H. This
is a clear indication that the field scale associated with delocalization in NbSe, is much

smaller than H.

In fact, we can scale the behavior of the low-field thermal conductivity of NbSe,
to that of V3Si using H* ~ H,,/7 (Fig. 6.8b). This is also seen clearly if we plot the
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Figure 6.8: (a) Thermal conductivity (circles) and the field evolution of the heat capacity
0C/T = [C(T,H) — C(T,H = 0)]/T (squares) [191] of NbSes normalized to the normal state
values vs H/H at very low fields. The line is a guide to the eye. (b) Normalized thermal
conductivity vs (H — H¢1)/H* for NbSep and V3Si with H* = H./7 and H,y respectively.
(c) Ratio of heat transport to heat capacity in NbSes. This is a measure of the degree of

delocalization.

ratio of the thermal conductivity to the specific heat (Fig. 6.8c) which measures the
degree of delocalization. The ratio is seen to have two regimes: a rapid increase below
H* ~ H5/9 and a slow one above. In summary, the second length scale associated
with delocalization in NbSe, is £* ~ £(0)/v/9 = £(0)/3. This may explain naturally the
shrinking of the vortex cores observed with muon spin rotation [199, 191].

Considering the fact that the upper critical field is related to the superconducting
gap by He o< A?/v% where vp is the Fermi velocity, we estimate the gap to vary over
the 'S by a factor of 3 (A* ~ Ay/3). (Note that we assume vp to be constant, within
the direction of the ab-plane, as found by band structure calculations [192]). This value
is consistent with other observations as will be discussed in the next section.

In summary,me asurements of heat transport in the vortex state of NbSe, at low tem-
peratures reveal the existence of highly delocalized quasiparticles down to fields close to

H,,. This is in striking contrast with what is expected in a s-wave superconductor where
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well-separated vortices should support only localized states, as is observed in V3Si. We
identify two characteristic length scales that govern the destruction of superconductivity
in NbSe,: the usual one associated with H,., and another associated with a much smaller
field H* ~ Hc/9. We attribute this to multi-band superconductivity, whereby the gap
on the pocket-like I' band is approximately 3 times smaller than the gap on the other

two Fermi surfaces.

6.3.2 Other evidence

NbSe; has been characterized in a number of ways. Recent direct evidence for MBSC has
emerged from high precision ARPES measurements [183]. This new viewpoint, which
constitutes a true change of paradigm, has turned a number of anomalous reports into
an impressive body of evidence in favor of the case for MBSC in NbSe,. We will review

these reports from this perspective.

ARPES

NbSe; has been a very good candidate for ARPES studies since one can obtain very
clean surfaces by cleaving (see for example [206]). However, the superconducting state
has not been studied for two main reasons: 1/ the low T, which is close to the typical base
temperature of an ARPES setup (~ 6 — 7 K) and 2/ the low value of the superconduct-
ing gap (~ 1 meV) which is also near the resolution of current ARPES measurements.
Nevertheless, Yokoya and co-workers have been able to perform high resolution ARPES
measurements in the superconducting state of NbSes, albeit at T= 5.3 K ~ 0.75 7T}
[183].

After having successfully mapped the FS of NbSe, which is consistent with calcula-
tions [192], the spectral function was measured on different Fermi surfaces near the Fermi
energy both in the normal and superconducting state. These are shown on Fig. 6.9. Be-
low T, a superconducting gap opens on the two large FS and the typical coherence peaks
are seen. The gap is measured to be 1.0+0.1 meV and 0.94+0.1 meV at T = 5.3 K for both
bands giving gap of 1.22 and 1.13 meV at T =0 usiﬂg the BCS temperature dependence.
This is in reasonable agreement with the weak-coupling BCS prediction which predicts
A(0) = 1.76 kT, = 1.09 meV. The I'-band shows no such behavior and although no gap
is actually resolved, the experimental precision imposes a limit of A < 0.2 4+ 0.1 meV.

Such momentum and energy resolved results represent conclusive evidence for MBSC
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Figure 6.9: ARPES spectra for NbSey on different Fermi surfaces (see the red circles in each
inset) taken above (red) and below (blue) T, (at 10 and 5.3 K respectively). For the large FS,
the typical superconducting coherence peak is seen and an energy gap is clearly resolved. On
the T-band, there is no evidence for either a superconducting peak nor an energy gap. The

resolution of the experiment allows to give an upper value of A < 0.2 £0.1 meV for this band.

in NbSe2. However, this study was only made at temperatures close to T.. ARPES is
also a surface probe and may be scrutinized as not necessarily being representative of the
bulk behavior. In this sense, our thermal conductivity measurements complemented this
study well by providing bulk measurements at very low temperatures [162]. What’s more,
it may be of importance to remember that the I'-band is calculated to be substantially
dispersive in the c¢-direction [192]. This leads to complications for ARPES measurements
which assume perfectly 2D electronic properties of the conduction bands.

ARPES measurements present clear and direct evidence for MBSC in NbSes. Bulk
studies at low temperatures such as sk measurements support and complement these

findings.

Scanning Tunneling Spectroscopy

Scanning tunneling spectroscopy (STS) has also been used extensively to study NbSey
thanks to its easily available clean surfaces [18, 204, 205]. In fact, STS was first success-
fully used to probe superconductivity in NbSeg. Hess and co-workers have been able to
measure the superconducting gap and to image bound states in vortices at low vortex

densities. Both studies lead to the conclusion of an average gap which is not uniform.
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Figure 6.10: The tunneling spectra of NbSez at T = 50 mK [205]. It is consistent with a
distribution of gaps ranging from 0.7 meV to 1.4 meV.

The density of states was imaged with high precision and at very low temperatures
(50 mK) as shown in Fig. 6.10 [205]. It is zero below energies of 0.7 meV consistent
with a superconducting gap without nodes. However, the coherence peaks are located at
a much higher energy of 1.4 meV. This is consistent with a distribution of gaps which
differs by a factor of at least two (in reasonable agreement with our assessment of a factor
of three difference between the small and large gap). Notably also, there is no evidence of
a second set of coherence peaks below the gap maximum as observed in MgB,. However,
STS probes parts of the FS differently as evident in MgB; for example. There, STS
along the planes or along the c-axis coupled very differently to the 7 and the o bands

[184, 185]. This may account for these small discrepancies.

What’s more, the imaging of the vortex cores have revealed very rich behavior both
in energy and space (distance away from the core) [204, 205] as reviewed in [21]. After
much theoretical work, Hayashi and co-workers have been able to identify the single
source which was able to reproduce this behavior, namely, an anisotropy of the gap [21].
In fact, they used a gap anisotropy of a factor of three to reproduce the experimental

results.

STS studies are seen to be consistent with MBSC in NbSe, both by measuring the gap

function directly and indirectly since theoretical modelling of the spectra in a magnetic
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field require a gap anisotropy of order 3. Further studies may be performed to distinguish
between an anisotropic gap and MBSC by tunneling from a different directions than the
c-axis (as was done in MgB;) and looking for a second set of superconducting coherence

peaks.

Heat capacity

ARPES and STS are both surface probes and lead one to ask if bulk properties also
provide supporting evidence for MBSC in NbSe,. This is indeed the case as both the
temperature and field dependence and, to a lesser extent, the effect of disorder lead to
the same conclusion.

The temperature dependence of the electronic specific heat was carefully studied by
Sanchez et al. [195]. It was seen to deviate from the simple BCS behavior and be better
fit by a model which assumes a gap anisotropy of a factor of 2.5 (see Fig. 6.11a,b).

In the vortex state, the specific heat is seen to have a low field anomaly in the sense
that it deviated from a linear behavior expected for s-wave superconductors. It has been
related to the shrinking of the vortex cores [191]. It was already shown above to be easily
understandable in terms of MBSC in the same way as in MgBy(see Fig. 6.7).

It is also interesting to note that MBSC requires a very small coupling or interband
scattering between the different FS. This coupling is predicted to be increased with
disorder due to increased inter-band scattering, and thus induce the usual BCS gap onto
the intrinsically decoupled band (or bands). This seems to be the case for NbSe, where
the field dependence of the specific heat is seen to recover a linear behavior with increased
disorder as seen in Fig. 6.11c [154].

Finally, one of the sources of MBSC may come from significantly different electron-
phonon coupling A on different bands. This was recently beautifully resolved with dHvA
measurements on the different sheets of MgB, where A was found to be much smaller
on the m-band (A, = 0.47) than on the o-bands (A, = 1.25 for both) [184, 185]. In
NbSez, dHvA measurements have only been able to resolve the I-band where A = 0.3
and cannot give a direct comparison of the different electron-phonon coupling parameter
[192]. However, by comparing the measured and calculated specific heat, one obtains
an average A = 1.8, much larger than that of the I-band. This large difference may be
the source of MBSC in NbSe, and is consistent with the idea that the superconductivity

originates from the larger bands and is only induced weakly onto the I'-band.
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Figure 6.11: (a) The electronic specific heat of NbSe, in the superconducting state against
1/t = T/T (after [195]). It is seen to deviate from the simple BCS prediction. (b) The best
fit is obtained using a model with a gap anisotropy of a factor of 2.5 (solid line). (c) The field
dependence of the specific heat for Nby_,Ta,Se;wi th z — 0.0 and z = 0.2 (after [154]). The

linear behavior is recovered in the dirty sample.
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Figure 6.12: (a) The vortex radius as a function of magnetic field measured by uSR at 2.3 K
(empty circles) and 4.2 K (filled circles) along with that extracted from STS (squares) [199].
The shrinking of the vortex cores can be understood in the context of MBSC. (b) The additional
damping extracted by dHvA measurement for both NbSe; (squares) and V3Si (circles) plotted
at the scattering rate in the superconducting state 7;7! [192]. It is seen to increase much more
rapidly for V3Si than for NbSey which is consistentwi th thermal conductivity measurements

[162] and with NbSe; displaying MBSC.

In summary, the temperature and field behavior as well as the effect of disorder of
the specific heat in NbSe, are consistent with that expected for a MBSC. What’s more,
the average electron-phonon coupling obtained from it is much larger than that measured
with dHvA on the I'-band, a strong indication that the superconductivity originates from

the larger bands.

Muon Spin Resonance

The radius of the vortex cores has always been assumed to have no magnetic field depen-
dence. Muon spin Resonance (uSR) has provided evidence that this is not the case in
NbSe; (see Fig. 6.12a) [199]. This result was highly unexpected. We now propose that
this result may not be general for all superconductors but rather is a natural consequence
of MBSC.

Indeed, as explained above, MBSC will lead to two ”upper critical fields” associated
with the two different superconducting gaps and also two different coherence lengths. An
easy way to picture this is to realize that the supercurrent flow around each vortex (which

decays with £ as the characteristic length scale) will have two decoupled components
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associated with the different sheets of the F'S. This will lead to strange objects: vortices
with two distinct radii. In turn, the larger radius will produce a featureless background
at much smaller fields and the smaller radius will be detected as a clearer feature in the
magnetic profile. This may be interpreted as shrinking vortex core radii as the field is
increased, consistent with what is observed in NbSe; [199]. It remains to be seen if the
1SR spectra are better fit with two vortex radii instead of one.

In this picture, the ratio of the radii will be the same as the ratio of the supercon-
ducting gaps. For NbSey, it is roughly a factor of three [162] and is also consistent with
the measurements of Sonier et al. [199]. There, the coherence length reaches a value
consistent with H. at higher fields and is a factor of 2-2.5 larger at the lowest fields
reached in the experiment.

In summary, one can easily understand previous uSR studies which reported a shrink-
ing of the vortex cores in the context of MBSC. We also obtain quantitative agreement

between these results and those of thermal conductivity.

de Haas-van Alphen effect

NbSe; was the first system where dHvA oscillations were observed within the vortex
state [123]. Since then, detailed studies have been performed but only to resolve one of
the Fermi sheets, namely, the I-band [114, 192, 116] which was measured by ARPES to
have a superconducting gap smaller than A < 0.2 4 0.1 meV.

In the vortex state, dHvA oscillations have an additional damping factor attributed
to the superconducting gap. This damping has the same form as an additional scattering
rate which is referred to as 7;'. It has been compared for the I-band of NbSe, and for
V3Si to show that the quasiparticles seem to be scattered more strongly in the latter as
shown in Fig. 6.12b [114, 116]. It should be noted that the normal state scattering rates
are 7' = 2.1 x 10'? s~land 75! = 1.1 x 10" s~'for NbSejand V;Si respectively.

This result agrees very well with thermal conductivity results [162]. They also suggest
that there may be a much smaller gap on the I'-band of NbSe, than in V3Si. Theoretical
modelling does not lead to a straightforward understanding as reported by Janssen et
al. [116]. There, the data for both compounds is compared to four different theoretical
treatments and yield different quality fits and very different values for the superconduct-
ing gap. For each though, the reduced gap A/1.76kgT, is estimated to be smaller for
NbSestha n for V3Si.
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In conclusion, a detailed comparison of the I'-band of NbSes and V3Si seem to indicate

that there is a much reduced gap for NbSesi n accordance with the picture of MBSC.

6.3.3 Summary

In summary, there has been direct evidence for MBSC in NbSe, from ARPES measure-
ments [183]. Our thermal conductivity studies confirm this to be true in the bulk and
provide an estimate of a factor of three ratio between the gaps on different Fermi surfaces.
Many other experimental reports such as STS, specific heat and dHvA are now seen to
be consistent with this picture by reporting an anisotropy of the average gap of a factor
close to three. The shrinking of the vortex cores as measured from uSR is also easily
understood in this context. Finally, there is evidence that MBSC stems from a much

different electron-phonon coupling for the Se 4p I" band and the Nb 4d bands.

6.4 Conclusion

The properties of NbSe, havel ong been thought to be representative of conventional
s-wave superconductors. The case for MBSC in this compound is now compelling from
ARPES [183] and heat transport [162] measurements. Previous STS [18, 204, 205, 21],
heat capacity [195, 199, 154], uSR [191, 199] and dHvA [114, 192, 116] studies can now
all be explained quite naturally in terms of MBSC. We estimate the gap to be roughly a
factor of three larger on the Nb 4d bands than on the Se 4p I pocket. This may be due
to a significantly different electron-phonon coupling on both sets of bands [192]. This
is an indication that superconductivity originates from the Nb 4d bands and is induced
onto the Se 4p I" pocket. However, the reason for the weak coupling between these bands
is still unclear. It may stem from the different dimensionalities (2D vs 3D) or from the
nesting of part of the Fermi surface which is argued to be the source of the charge density

wave state (see for example [206]).



140 CHAPTER 6. NBSE;: A MULTI-BAND SUPERCONDUCTOR



Chapter 7

TlhBasCuOg_5: WF law in

overdoped cuprates

7.1 Introduction to High 7, Cuprates

High T, cuprates where discovered in 1986 by Bednorz and Miller [207] and have been the
subject of much study. The crystal structure of these materials is generic and is composed
of Copper-Oxygen conducting planes separated by planes of other atoms whose role is to
transfer charge to the CuO; planes. This charge transfer can be tuned by doping and will
add either holes or electrons to the planes. The resulting phase diagram as a function of
carrier concentration (or doping) in seen in Fig. 7.1 with hole doping (the most common)
being on the rightside and electron doping on the left [208]. Atzer o doping, there is
one electron per copper site and one obtains a Mott insulator. The Coulomb interactions
localize the electrons on the copper sites and their spins order antiferromagnetically.
However, a superconducting phase is soon reached near p ~ 0.05 holes/Cu atom and
disappears around p ~ 0.3 holes/Cu atom showing a superconducting dome. It is usual
to distinguish three regions of the phase diagram as follows: optimally doped where T, is
maximum, overdoped at higher doping and underdoped at lower dopings.

A good understanding of the phase diagram has unanimously been thought to be
central for understanding high 7T, cuprates. In this light, more work has unveiled a much
richer (or more complex depending on the point of view) phase diagram. Such richness
also brings forth different interpretations of its idealized form. This is true both experi-
mentally where several important details are still under scrutiny, and theoretically where

such experimental uncertainties leave room for different idealized phase diagrams. The
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Figure 7.1: (a) The phase diagram of hole doped Lag_,Sr,CuO4 and electron doped
Nd2_;Ce;CuOy4 (after Maple [208]). The striking features are the passing from an antifer-
romagnetic insulator to a superconducting dome with increased doping. Also note the approx-
imate electron-hole symmetry. (b) An idealized phase diagram of high T, cuprates. A notable
feature is the opening of the pseudogap at a temperature T*. There was little solid evidence
that the overdoped side of the phase diagram forms a Fermi liquid before our verification of the
Wiedemann-Franz law in overdoped T1-2201. Two possible quantum critical points are showed,
the first being at the edge of the superconducting dome and a second which is thought to be

near p = 0.2 holes/Cu atom.

main components of the phase diagram are sketched in Fig. 7.1: an antiferromagnetically
(AFM) ordered phase at very low doping (Mott insulator) and a superconducting dome.
The overdoped region is metallic and a Fermi liquid ground state is thought to be recov-
ered. On the underdoped side, there is much evidence for a pseudogap [209]w hich opens
much above the superconducting 7. It is however not yet clear whether it constitutes a
new phase which competes with the superconducting order or if has the same origin and
is a precursor to superconductivity.

What’s more, we easily identify three possible quantum critical points (QCP): the dis-
appearance of the AFM order, the appearance of superconductivity near p = 0.05 holes/Cu
atom and its disappearance near p = 0.3 holes/Cu atom. But a fourth QCP has often

been proposed within the superconducting dome, for example, near p = 0.2 holes/Cu
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atom [210]. The nature of this critical point is still being investigated. These quantum
critical points are interpreted in various ways in different theoretical frameworks. This
has the beneficial effect of making experimental verifications of these theories easier. More
realistically, experiments will be able to either lend credibility, put strong constraints, or

sometimes rule out these theories.

Finally, the most notable success within this field has been to unambiguously prove
that the order parameter (or the superconducting gap) has d,2_,2 symmetry with nodes
in the [, 7] direction [26]. The presence of a gap with such topological nodes has been
confirmed by many thermodynamic, transport and spectroscopic probes [26]. The smok-
ing gun was obtained by phase-sensitive experiments which are well described in [26]. It
was verified in many compounds in both the hole-doped and electron-doped side of the
phase diagram but was mainly done at optimal doping. Although this result does not
lead directly to a detailed knowledge of the pairing mechanism for high T, cuprates, it
imposes strong constraints on potential theories. It suggests that the pairing mechanism

is electron-mediated rather than phonon-mediated as in BCS superconductors 1.

From this, it has been concluded that a change in paradigm may be necessary to
understand the underlying physics of the cuprates and that a simple extension of BCS
superconductivity may not be sufficient. Many of these novel treatments involve some
type of spin charge separation (SCS) [35, 34, 36] in various forms while others, such as
the SO(5) theory [211], the d-density wave picture [212] and the QED3 theory [213], do

not.

In this chapter, we will present the results of a study of the thermal conductivity
in highly overdoped TI1-2201 (T, ~ 15 K) which was set out to put strong constraints
on theories invoking SCS. By testing the Wiedemann-Franz law in the normal state of
T1-2201, we show unambiguously that there is no SCS in overdoped cuprates. It is also
the first solid evidence that a Fermi liquid ground state is recovered on the overdoped
side of the phase diagram. In the superconducting state, we find quantitative agreement
with BCS theory for a d-wave gap. This is the first report of evidence for d-wave pairing
in such a highly overdoped cuprate. Finally, we are able to put constraints on the nature

of a possible QCP within the superconducting dome.

!This point is still under debate with recent reports that phonons may have a significant role in the
pairing mechanism [130]
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7.2 TlgBazCu06+5

This Chapter will focus on the high temperature cuprate TloBayCuQOgys or T1-2201 for
short. It was chosen because it can easily be overdoped. Indeed, by changing the oxygen
content, one can tune the carrier concentration and move from optimal doping all the way
past the superconducting dome in the far overdoped region. This can also be achieved
with LSCO by doping with 30 % Sr or more but this often leads to disordered crystals.
Indeed, even when the samples are grown homogeneously (an arduous task in itself), they
remain much more disordered than what is obtained in T1-2201, with the best quality
crystals having po ~ 20 u) cm [83] as compared to po =~ 6 pQ2 cm for T1-2201.

In many ways, T1-2201 is the ideal cuprate material. Its crystal structure is tetragonal,
without the CuO chains that complicate the properties of the orthorhombic compounds
YBayCu3Og6yy (Y-123) and YBayCuysOs (Y-124), or the buckling that alters the unit cell
of BiySryCaCuyOsg (Bi-2212). It is made of a stack of single CuOs planes, and is therefore
not subject to possible bi-layer effects such as encountered in Bi-2212. It has a high
maximum critical temperature 77" of 90 K, at optimal doping, much as in Y-123 and
Bi-2212. In this sense, it is free of the possible concerns about the low T, found in single-
plane Lay_,Sr,CuOy4 (LSCO). Finally, the d,2_,2 symmetry of its superconducting state
has been confirmed by a phase-sensitive experiment [26], tunneling [214] and microwave
conductivity [215] measurements, at least at optimal doping [26]. What’s more, very

clean samples are readily available with mean free paths of the order of 1000 A [216].

7.2.1 Crystal structure

T1,BayCuQg.s is a single plane cuprate superconductor and its crystal structure is found
in Fig. 7.2. Both tetragonal and orthorhombic phases have been reported for this system
[217]. The lattice parameters are a = 3.86 A and ¢ = 23.2 A. The crystals used here
are tetragonal [216]. Studies on T1-2201 have been rather limited for two main reasons:
1/ the available samples are small in size and 2/ the synthesis of the crystals is not only

difficult but requires care as thallium oxides are poisonous.

7.2.2 Important properties

T1-2201 is the ideal cuprate for the study of the overdoped side of the phase diagram for

the reasons stated above. It has also been well characterized providing a good base for
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Figure 7.2: Crystal structure of T1-2201. It is made of a single layer of CuO4 planes. Both
a tetragonal and an orthorhombic phase are found with approximate lattice parameters a =

3.86 A and ¢ = 23.2 A.

comparison.

Doping

T1-2201 is stoichiometric for 6 = 0 where it is optimally doped with a T, ~ 90 K.
Overdoping is achieved by adding oxygen. TI1-2201 is fully overdoped and no longer
superconducting for 6 ~ 0.1. This should be compared to YBayCu3Og,, where x = 0
is the undoped insulator and x = 1 gives a slightly overdoped sample with T, ~ 89 K
while T7"%* = 93 K. The disadvantage of having such a small window of oxygenation is
the increased difficulty in obtaining a homogeneous oxygen content in a sample. In fact,
attempts at reliably mapping the critical temperature as a function of oxygen content
were not successful (although see [219]). What’s more, in YBCO, the oxygen dopant is
known to be in a specific location (the chains) whereas it is not clear how the oxygen
arranges itself in T1-2201. It should be noted that doping with oxygen, in general, has an
elegant advantage: the same crystal can be studied as several doping levels thus reducing
the possible errors due to different samples and different growths.

This was used to study the evolution of the resistivity with doping on the same crystal

as shown in Fig. 7.3 [218]. There, one recognizes the linear resistivity with dp/dT ~
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Figure 7.3: The resistivity of T1-2201 as a function of oxygen doping. At optimal doping,
the resistivity is linear with a slope near 1 uf) cm K! (after [218]). As the sample becomes
overdoped, the resistivity acquires an upward curvature which is taken to be evidence for the

recovery of a Fermi liquid.

140 cm K1 at optimal doping. An upward curvature develops as one overdopes. More
quantitatively, the resistivity was analyzed in terms of a single power law p = pg + bT*.
Fig. 7.4 shows the resulting o against transition temperature for the same crystals used in
our study (Fig. 7.4a) [218] and for other crystals of T1-2201 and LSCO (Fig. 7.4b) [220].
The power law is seen to tend towards o = 2, the value expected for a Fermi liquid. This
was interpreted as evidence that the overdoped state of cuprates does recover a Fermi
liquid ground state. However, it was also found that the resistivity was better fit by a
form p = po + bT + cT? where the ratio ¢/b is shown as a function of T, in Fig. 7.4a. We
will discuss this behavior further below.

We will now focus on the properties of highly overdoped crystals with T, ~ 15 K

which are relevant to our study.

Upper Critical Field

In conventional superconductors, one can readily suppress the superconductivity and

access the normal state by simply applying a magnetic field which surpasses the upper
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Figure 7.4: (a upper) The resistivity of T1-2201 was fitted with a single exponent power law
p = po + bT* which is plotted against T. (after [218]). o goes from 1 at optimal doping to
around 1.8 when non-superconducting. (a lower) The resistivity was better fit with a form
p = po + bT + cT?, especially at low temperatures for samples with low T.. The ratio b/c is
plotted as a function of T,. It is clear that the T2 term becomes more significant as the T is
reduced. (b) The resistivity of TI-2201 and LSCO was fitted by a single exponent (labelled n
on this figure) which was found to go from 1 at optimal doping to close to 2 on the overdoped
side [220].

critical field He,. Instead, it has proven difficult to study the normal state properties of
cuprate superconductors at low temperatures due to the extremely high upper critical
fields associated with the high transition temperatures. To counter this difficulty, three
approaches were used: 1/ studying systems with a reduced optimal 7, (and subsequently
Hc) such as electron doped PCCO and NCCO, 2/ the use of pulsed magnetic fields
of up to 60 T through the phase diagram of systems with an optimal 7, around 40 K
such as LSCO and Bi-2201 [221, 222] and 3/ studying systems with reduced 7T, by either
sufficiently overdoping or underdoping. We use the latter approach and study highly
overdoped T1-2201 with T, ~ 15 K and H., ~ 15 T.

The upper critical field of cuprates has been the object of much debate over the years.
This was first raised by Mackenzie and co-workers [216] which reported a resistive upper
critical field with a positive curvature down to T,/1000 of overdoped T1-2201 as shown in
Fig. 7.5a. This cast doubt on the ability of resistivity to adequately measure H,,. The

resulting critical field is instead associated with the irreversibility line as reported from
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Figure 7.5: (a) The resistive upper critical field for T1-2201 with T, ~ 15 K [216]. It is seen
to have a positive curvature all the way to T./1000 and reaches a value of H.(0) ~ 16 T at
zero temperature. (b) The upper critical field near T, as obtained from resistivity (black line),
magnetization (black squares) and heat capacity (black circles and white squares) [223]. The
thermodynamic upper critical field is seen to be larger than the one obtained from resistivity
and magnetization. At T = 0, it is believed that the thermodynamic H,s is the same as the

one obtained from resistivity [175].

magnetization studies [223]. Also, further specific heat measurements at temperatures
near T, on the same samples reported a thermodynamic H,, above the resistive upper
critical field as shown in Fig. 7.5b [223]. A more conventional negative curvature was
also seen. It is believed that at zero temperature, both the thermodynamic H, and the

irreversibility line meet, as argued by Wang et. al. [175].

For T1-2201 with T, ~ 15 T, the zero-temperature H.2(0) is between 12 and 16 T
depending on the criterion used for a field applied parallel to the c-axis [216]. Note that
this upper critical field is much reduced for a crystal with a smaller lower transition
temperature (e.g. T1-2201 with T, ~ 11 K shows H(0) between 3 and 6 T [224]). Also,
with the field parallel to the planes, H., is much larger (see [225]). We will use the fact
that superconductivity can be suppressed by a magnetic field available in our laboratory
to probe the normal state of the overdoped cuprate T1-2201 with a 7. ~ 15 K.



7.3. CHARGE TRANSPORT 149

7.2.3 The samples

The overdoped samples of T1-2201 used in this study were graciously supplied by A.P.
Mackenzie (University of St. Andrews, Scotland). They were rectangular single crystals
with typical dimensions of 0.4 mm and 0.2 mm in the tetragonal basal plane and 10 pm
along the c-axis. The voltage pads had a width of 25 um and the spacing between the
electrodes was 0.3 mm. They were grown by the same technique as used by Mackenzie
and co-workers in previous studies [216, 223, 225]. They have T, ~ 15 K, in zero magnetic
field. Using the empirical formula T./T7™* = 1 — 82.6(p — 0.16)? [226], this translates
into a carrier concentration of p = 0.26 hole/Cu atom.

The resistivity of our samples is essentially identical to that obtained previously [216],
with pp = 5.6 p) cm. Both heat and charge transport were measured using the same
contacts, made by diffusing silver epoxy. A typical value for the contact resistance was 0.1
2 at 4 K. A description of the procedure to obtain these contacts and the homogeneous
oxygen distribution in our crystals can be found in Appendix C. The geometric factor
used to convert from resistance (electrical or thermal) to electrical resistivity p or thermal
conductivity x was set by requiring that p(300 K) = 180 u€ cm, the value obtained by
Mackenzie and co-workers in previous studies of numerous crystals with the same doping

level [216, 223, 225, 227]. The uncertainty on this value is estimated at +10 €2 cm.

7.3 Charge transport

The charge transport of TI-2201 has been studied in great detail in the past ten years
for the full range of available doping [216, 228, 225, 227, 229, 230]. Our results on highly
overdoped T1-2201 are completely consistent with those reported before and do not bring
forth any new information. We are mainly interested in the resistivity to be able to
compare it to the thermal conductivity in the context of the Wiedemann-Franz law. It is
nonetheless interesting to review the results from charge transport in overdoped cuprates.

As mentioned earlier, the power law dependence of the resistivity tends towards a
T? behavior on the overdoped side of the phase diagram (see Figs. 7.3 and 7.4). This
early report was seen as evidence that a Fermi-liquid state is recovered at high doping.
However, resistivity yields true information about the ground state only at very low tem-
peratures. Fortunately, this can be studied with fully overdoped non-superconducting

samples (see [83] for example) or samples where the superconductivity can be suppressed
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by a magnetic field [227, 221, 231, 222]|. A more careful analysis leads to the conclusion
that overdoped cuprates may be near a QCP. We will also briefly review the magnetore-

sistance of T1-2201 and estimate the purity regime of our samples.

7.3.1 p(T)

The resistivity is shown as a function of temperature in Fig. 7.6, for fields ranging from
zero to above Ho(0). A slight positive magnetoresistance is observed, in agreement with
previous work [225]. The resistivity below 30 K (and above T) is best fit by the function
p = po+bT+cT?, with a substantial linear term (i.e. bT > ¢T? for T' < 15 K). The fitting
parameters are po(H) = 5.84, 5.99 and 6.15 ) cm at H = 7, 10 and 13 T, respectively,
and b = 0.064 uQ) cm K1, ¢ = 0.0054 uQ cm K2 at 13 T. This unusual dependence
was reported previously by Mackenzie et. al. [227] who found the coefficient of the linear
term to be between 10 to 15 times smaller than the one at optimal doping (which is
roughly 1 uQ cm K=! for all cuprates) in agreement with our fitting parameters. It was
interpreted as "non-Fermi-liquid” behavior, in the sense that no linear term is expected
in conventional FL theory.

Let us see what physical sense can be made of the magnitude of these parameters. The
quadratic term can be compared to the experimental Kadowaki-Woods ratio [44]. The
latter relates the normal state specific heat and the magnitude of the T? resistivity which
gives ¢/7% ~ 1 x 1075uQ cm (mJ~! mole K)? = ay (where p = py + cT'?) for strongly
interacting electron systems. In T1-2201, using v ~ 3 — 6.5mJ mole™! K~2 [223, 232]
giving ¢/v% ~ 13 — 60 ag. This large discrepancy was pointed out by Nakamae and co-
workers and was also found in overdoped LSCO (c/v? ~ 5 a¢) and PCCO (c/v? ~ 10 ao)
[83]. Although this behavior is not yet understood, it suggests that electron-electron
scattering is very strong (and surely dominant) even in highly overdoped cuprates.

As for the linear term, it is interesting to point out that Greco and Dobry have ob-
tained a linear term similar in magnitude to ours (¢ ~ 0.0074 uQ2 cm K~2) by fitting the
lineshape of the imaginary part of the self-energy (as measured by ARPES in overdoped
Bi-2212) [233]. They obtain this result in the context of a marginal Fermi liquid theory
which has an additional electron-phonon scattering mechanism (which would be respon-
sible for the additional term in the resistivity). However, the authors point out that
their result implies that the electron-phonon term is nil at optimal doping while there

is no physical reason to expect this. What’s more, we saw above that the additional
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Figure 7.6: Electrical resistivity of T1-2201 vs temperature for a current in the basal plane at
different values of the magnetic field applied normal to the plane. All trace of superconductivity
has vanished by 13 T. Inset: p(T) at H = 13 T (filled symbols) and 15 T (open symbols). The

line is a fit of the 13 T data to the functional form p(T) = po + bT + cT72.

quadratic term is most likely due to electron-electron scattering and not electron-phonon

scattering.
In a more qualitative way, deviations from the standard 72 dependence have been

observed in a number of heavy-fermion materials, for example, T2 in CePd,Si, below

20 K [234]. In this material, this is associated with the proximity to a quantum critical

point (QCP), where antiferromagnetic order sets in as a function of pressure. Other
systems also reveal a linear (or near linear) temperature dependence of the resistivity
in the proximity of a QCP, as found recently in SrzRu,O-, [235], YbRh,Si, [236] and
CeColns [237] where the tuning parameter is the magnetic field. In the case of cuprates,
the obvious QCP would be the onset of superconductivity at a critical concentration
P close to 0.3 hole/Cu atom, but a QCP has also been postulated to exist inside the

superconducting region [210].
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7.3.2 p(H)

The effect of a magnetic field on the resistivity has two effects. The most apparent
is to lower the transition temperature as is shown in Fig. 7.6 in accordance with pre-
vious studies [216, 225]. We see that for our samples, the superconductivity is fully
suppressed by 13 T. The second is a weak magnetoresistance. For our purposes, it is
of interest to provide a good measurement of po(H) only to enable a reliable test of the
WF law. However, it was studied in great detail by others both for pg [227, 230] and
pe [229]. Our results are consistent with those reported, namely a magnetoresistance of
dlln(Ap/p)]/dB? = 4.0 £0.1 x 10~* T2 [225].

7.3.3 Purity regime

Our TI1-2201 samples have a residual resistivity po = 6 p€2 cm which is the lowest reported
for any cuprate superconductor. It is a value characteristic of a dirty metal. In fact, the
mean free path for these samples is calculated to be of the order of 1000 A [216, 227].
It should be recognized that even with such high quality samples, the scattering rate I'
is not small compared to T,. It may be estimated using the standard transport expression
for the normal state conductivity: xky/T = Lo/po = %71\[1}%7' = %'mvpl , where 7y is the
specific heat coefficient, 7 = 1/(2I) is the scattering lifetime and [ is the mean free path.
With vy ~ 3 mJ K~2 mole™! [223] and vp = 2.5 x 107 cm/s, one gets [ = 1700 A
and Al' ~ 0.4 kpT.. This is to be compared to the critical I' = 0.88 kg7, at which
d-wave superconductivity is predicted to be destroyed [78]. Our sample is therefore in a

moderately dirty regime.

7.3.4 Summary

In summary, we have performed resistivity measurements in a magnetic field of TI-2201
with a T, >~ 15 K. The superconductivity is completely suppressed by a magnetic field
of 13 T. The temperature dependence of the resistivity at low temperature is best fit
by a functional form p = po + bT + cT? form with a substantial linear term. The T2
term is indicative of a strong electron-electron scattering mechanism. The linear term
points to the proximity of a quantum critical point. The resistivity also displays a small
magnetoresistance consistent with earlier reports. The residual resistivity enabled us to

obtain an estimate of the mean free path (~ 1000 A) and of the purity regime in the su-
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perconducting state (Al'/kpT, ~ 0.4). Most importantly, our thorough characterization
allows us to obtain a reliable value of the residual resistivity as a function of magnetic

field. This is a mundane task but it is crucial for a reliable test of the WF law.

7.4 Heat Transport

The thermal conductivity « is shown in Fig. 7.7. The sample was cooled in field to insure
a homogeneous vortex distribution. The data is plotted as x/T vs T? to separate the
contribution of electrons from that of phonons, given that the asymptotic dependence of
the former as T — 0 is linear in 7" while that of the latter is cubic. In other words, in
Fig. 7.7, the electronic contribution is the residual linear term xo/7" given by the intercept
of a linear fit with the T = 0 axis. The value of ko/T obtained in this way is: 1.41, 2.76,
3.47, 3.75, 3.87, 3.90, 3.95, and 3.95 mW K2 cm™!, at H = 0,1,2.5,4,5.5,7, 10, and
13 T, respectively. As explained above, the uncertainty on the overall absolute value is
approximately +5%. However, the relative uncertainty, e.g. between different fields, is
much lower, around 1 %. This high degree of reliability in extracting ko/7T is due to the
fact that in these samples electrons conduct much better than phonons, and hence the
slope of x(T)/T in Fig. 7.7 is weak relative to the intercept. Note that at high fields,

electrons scatter phonons very effectively and «(T') is entirely electronic below 1 K.

In zero field, one sees a positive slope associated with phonon conductivity. Its mag-
nitude is of the correct order as expected from the size of the crystal and a typical sound

velocity in solids. From equation 2.22 we obtain spy,/T% ~ 0.8 mW K% cm™! using a

mean diameter d ~ 2,/0.001 cm x 0.02 cm/7 = 5 x 1073 cm and a phonon velocity of
Uph = 5x 10° cm/s (as observed in TlyBayCaCuyOs [238]). This is in very good agreement
with the experimental value of kpp/ T3 =0.87 mW K4 cm™!. However, as one increases
the magnetic field, the phonons are scattered more strongly by a growing density of de-
localized electrons and the slope disappears for H > 4 T. Above this field, the thermal

conductivity is purely electronic.

We now turn to a discussion of these results, first in the normal state by comparing the
thermal conductivity to the resistivity in the context of the Wiedemann-Franz law, and

in the superconducting state in the context of BCS theory for a d-wave superconductor.
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Figure 7.7: Thermal conductivity of T1-2201 for a heat current in the basal plane, plotted as
k/T vs T?, at different values of the magnetic field applied normal to the plane. The thin lines
are linear fits to the data. The thick line is Lo/p(T) where p(T') is a fit to the resistivity at
13 T (see inset of Fig. 7.6).

7.5 Normal State

The origin of superconductivity in cuprates is not yet understood. Much of this confusion
stems from the fact that the normal state of these systems has also eluded comprehension.
Let us indeed remember that one of the foundations of BCS theory is that superconduc-
tivity forms from a Fermi liquid state and the instability of the Fermi sea to Cooper
pairing (see Chapter 1). It is well known that the ground state is a Mott insulator at
half filling (p = 0), but a simple question remains: how does one move away from this
ground state with doping? It has been suggested that at optimal doping, one reaches
a Marginal Fermi liquid [239]. At higher dopings, a Fermi liquid ground state has long
been assumed to be recovered although there is no solid evidence to support this lore.
In this section, we turn our attention to the WF law in the normal state of cuprates

which turns out to be a powerful and elegant way to address this issue. It has recently
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been reported to be violated at optimal doping for an electron-doped cuprate PCCO, a
clear sign of non Fermi liquid behavior [46]. Here we show that the WF law is perfectly
satisfied for the overdoped cuprate T1-2201. We will also review further work that has
emerged on another overdoped systems [83] and on the underdoped side of the phase
diagram [240]. What’s more, we will examine very recent reports of a verification of the

WF law at optimal doping in a hole doped cuprate [241].

7.5.1 The Wiedemann-Franz law in cuprate superconductors

Fundamentally, the linear term in k at T' = 0 reveals the presence of fermionic excitations
in the electron system. We can then ask whether these excitations carry charge. This
question can only be addressed in the absence of any superfluid that can also carry charge,
which amounts to testing the Wiedemann-Franz law in the normal state. This law is one
of the most fundamental properties of a Fermi liquid, reflecting the fact that the ability of
a quasiparticle to transport energy is the same as its ability to transport charge, provided
it cannot lose energy through collisions. It states that the heat conductivity x and the
electrical conductivity o of a metal are related by a universal constant:

K FBye _ (7.1)
ol' 3 e
where T is the absolute temperature, kg is Boltzmann’s constant and Ly = 2.45 X
1078 W Q K2 is Sommerfeld’s value for the Lorenz ratio L = x/0T. Theoretically,
electrons are predicted to obey the WF law at T — 0 in a wide range of environments:
in both three or two dimensions (but not strictly in one dimension), for any strength of
disorder and interaction [242], scattering and magnetic field [50]. Experimentally, the WF
law does appear to be universal at T — 0: until recently, no material had been reported
to violate it. For a detailed discussion of this law, see Chapter 2. The first exception
was found in optimally-doped Prs_,Ce,CuO4 (PCCO), an electron-doped cuprate where
heat conduction exceeds the electrical conduction by a factor of two or so as shown in
Fig. 7.8b [46] ! It was concluded that Fermi liquid theory breaks down in a fundamental

way for cuprates, at least near optimal doping. An obvious question is raised: is the WF

11t should be pointed out that we will assume that the violation of the WF law in optimally doped
PCCO shows that L/Lo ~ 2 [46] and will not discuss the strange behavior of L/Ly ~ 0 at T — 0
which is still being scrutinized experimentally. The same type of low temperature downturn has been
observed in overdoped LSCO [83] and is currently thought to be an experimental artifact which is not
yet understood.
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Figure 7.8: (a) The thermal conductivity and the resistivity in the normal state of overdoped
T1-2201 plotted as /T and Lo/p at H = 13 T. The WF law is seen to be perfectly satisfied.
(b) Equivalent data for optimally-doped PCCO [46]. There, the WF is strongly violated, which

constitutes clear non Fermi liquid behavior.

law obeyed in any part of the phase diagram? We have found that it is in an overdoped
cuprate with T, ~ 15 K [162].

Wiedemann-Franz law in T1-2201

It is in general difficult to test the WF law in cuprate superconductors because of their
high upper critical fields. Fortunately, in strongly-overdoped T1-2201, the normal state
can be reached in moderate fields. In our crystals, the superconductivity has completely
vanished by 13 T, at which field we find ko/T = 3.95 + 0.04 mW K2 cm™! and py =
6.15 £ 0.03 uf2 cm, so that L = poko/T = 0.99 £ 0.01 Lo, in perfect agreement with the
WF law. Note that the Lorenz ratio does not suffer from the 5% uncertainty associated
with the geometric factor, as both transport measurements are performed using the same
sample with the same contacts. The error bars are therefore on the order of 1 %. In
Fig. 7.7 and 7.8a, the transport of heat and charge of T1-2201 are compared directly by
reproducing the charge conductivity at 13 T from the inset of Fig. 7.6. This is done by
plotting Lo/p(T) vs T using the fit to the 13 T data for p(T) (inset of Fig. 7.6). The
charge conductivity Loo(T) is seen to be equal to the heat conductivity x(T)/T at 13 T.

The basic implication of this result is that the fermions which carry heat also carry
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charge e and are therefore indistinguishable from standard Landau quasiparticles. In
particular, there is no evidence of any spin-charge separation. Indeed, if electrons were to
fractionalize into neutral spin-carrying fermions (spinons) and charged bosons (chargons)
[36], there would be no reason to expect the WF law to hold, as the heat-carrying fermions
would not take part in the transport of charge. This result therefore imposes a constraint
on theories of spin-charge separation (SCS): the critical hole concentration pscg at which
electron fractionalization starts to occur is not the zero temperature point of the phase
diagram where superconductivity starts to occur (on the overdoped side), but can only be
at lower p. In other words, any hypothetical onset of SCS must obey pgcs < 0.26 < p,.
It therefore appears that the mechanism for superconductivity in this overdoped region
of the phase diagram is not the condensation of charge-e bosons, but most likely Cooper
pairing. Note that (barring any profound electron-hole asymmetry) this conventional
picture is expected to break down with underdoping, as suggested by the violation of the
WF law in PCCO near optimal doping [46].

Although the standard FL description fails, as revealed by the non-quadratic T’ depen-
dence of p(T'), the basic nature of the electronic excitations in the limit of zero energy is
that of Landau FL quasiparticles. (A similar situation is seen in heavy-fermion materials
[57].)

Wiedemann-Franz law in optimally doped cuprates

The astonishing result of a violation of the WF law in optimally doped PCCO has brought
much activity both experimentally and theoretically. However, it is the only report of such
a violation and remains to be reproduced in another system or at another doping level. In
this light, a very recent study by Bel and co-workers claims to have verified the WF law
in hole doped Bi-2201 at optimal doping [241]. There, the samples had a reduced T, near
10 K (possibly due to disorder). This enabled a complete suppression of superconductivity
with currently available static magnetic fields of 25 T. These contradictory results may
be due to one of two things: 1/ a drastic electron-hole asymmetry which leads to a
breakdown of Fermi liquid theory only with electron doping, or 2/ one of the reports
is flawed due to some unknown reason. Before jumping to either of these disturbing
conclusions, it is wise to inspect the available experimental data critically.

The recent report of Bel and co-workers is very commendable as great experimental

difficulties were dealt with beautifully. The data they present can regrettably not rule
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out a violation of the WF law. They indeed find L/Lg to be 1.2 and 1.3 for two optimally
doped samples (as compared to 1.7 in PCCO). They attribute this small departure from
the WF law to thermal and electrical contacts not being the same due to their large
widths with respect to the distance between them. However, the possibility that the WF
law is truly violated cannot be ruled out. What’s more, their data does not extend to
temperatures lower than 200 mK which may lead to an incorrect extrapolation to T — 0
of the electronic thermal conductivity. This fact may of course lead one to observe a
perfectly verified WF law or, instead, to a definite violation. As the authors point out,
a more careful experiment will be necessary to obtain a more definite conclusion.

In all fairness, one must be equally critical about the experimental data on PCCO
[46]. In this light, let us remember that the data is seen to have two regimes: below
250 mK where the electronic thermal conductivity is seen to go to zero at T — 0, and
above 250 mK where it surpasses the expected WF law by a factor of two or so. The
low temperature part is thought to possibly be due to an extrinsic experimental problem
such that we will not discuss it here and wait until it is better understood. At higher
temperature, a coherent analysis was used to obtain L/Lq ~ 2 [46]. However, it should
be noted that alternate analyses can lead to a different temperature dependence of the
thermal conductivity and consequently a different L/Ly. Nevertheless, a violation of the
WF law is inevitably obtained.

With the lack of a more convincing verification of the WF law, we will simply keep in
mind the above discussion and assume, for now, that the WF law is violated at optimal

doping in cuprate superconductors.

Wiedemann-Franz law in other cuprate superconductors

The WF law was verified in another system, namely fully overdoped non-superconducting
LSCO as shown in Fig. 7.9a [83]. They found L/Lo to be 0.83 and 0.86 for samples with
po = 23 and 49 pf) cm respectively. It should be pointed out that their data suffers from
a large phononic background which is non-existent in T1-2201. In order to deal with
this problem, the authors have measured the c-axis thermal conductivity x./T' (which is
purely phononic) and assumed that the lattice thermal conductivity in the a — b plane
was proportional to it such that &pn .5 = 1.6 X k.. From this analysis, they obtained
the electronic contribution in the plane as . /T = Ka/T — 1.6 X K. which is constant in

temperature, in accordance with the fermionic nature of the excitations. It is important
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to be critical about this necessity to model the phononic contribution. Indeed, although
it is possible that the reported values of L/Ly may be flawed, one doesn’t know to which
extent. In all likelihood, it may explain the small departure from the WF law, but it
leaves some ambiguity with respect to a possible violation of the same type as observed
in PCCO where L/Ly > 1.

The resistivity was found to obey a perfectly T2 law at low temperature which was
seen as an additional indication of a Fermi-liquid ground state. The magnitude of the
quadratic term revealed to be larger than expected from the experimentally universal
Kadowaki-Woods ratio [44] for strongly correlated systems. This interesting result, which
has yet to be understood, may serve as a strong reminder that a T? resistivity should
not be automatically associated to a Fermi liquid ground state.

The overdoped side of the phase diagram has been convincingly showed to form a FL
but the violation of the WF law in optimally-doped PCCO indicates that this picture
may break down at lower doping. In fact, it may be expected to break down most
significantly on the strongly underdoped side of the phase diagram. The task of testing
the WF law for underdoped cuprates may seem possible as the superconductivity may
also be destroyed by a small magnetic field due to the reduced T,. This was attempted
in LSCO at the very edge of the phase diagram (with x=0.06) [240]. However, a new
problem is imposed at such low dopings, namely, the normal state is seen to cross over
to an insulating ground state, at least in LSCO and Bi-2201 [221, 222]. In the normal
state, the charge transport at zero temperature is therefore nil (infinite resistivity). The
resistivity of LSCO (x=0.06) is shown in Fig 7.9b. According to the WF law, this would
lead to no electrical transport in the normal state. Within experimental errors, this is
seen to be the case (see Fig. 7.9b). However, although consistent with the WF law, this
experiment neither proves nor disproves its validity for underdoped cuprates.

Speculating further, one can obtain the expected value for the WF law from resistivity
measurements in high fields [221, 222]. Although the same cannot be done with thermal
conductivity in the absence of such high static magnetic fields, some information can be
gathered nonetheless. Indeed, in zero field, there is a residual electronic linear term rgo/7"
over the whole phase diagram which is associated with nodal quasiparticles [243, 63, 240)].
In LSCO, Takeya and co-workers found that keo/T" > Lo/po for underdoped samples
and koo/T < Lo/po for overdoped samples [243, 221]. Qualitatively, we expect the
following behavior for the thermal conductivity in a magnetic field if the WF law is
obeyed in the normal state: 1/ x(T = 0, H)/T decreases for underdoped LSCO and



160 CHAPTER 7. TL3BA;CUQOg,s5: WF LAW IN OVERDOPED CUPRATES

T T T
2, wxcm) 2 {mtZcmy

160 P80 i i 16 : .'. 10
0 _(;.1> 12 3
R v , ;
L e e LI C1,"’
| do4 s/ 48
Q’D
3
6 ©
)
2
-4
12

La”SrwGuO4
0 1 R ) L L 1 2 0
0 50 100 150 200 250 300
T{K) [
5 T B } ]
L 1A
% 12} = T e x=0.06 b) -
$ 10! N
4 § gz : CE) | \\ a X=0-05 .
L 0sf o \ -
E = oz2f _\1{ B N = x=0 T
£ A0 ’ o -
= 3F 2 v 8z 64 o0& on ; \\
£ EN R |
5 5 L. \i\ -]
2t E L ~ 4. .
,:E, _..i ...................................... \ \‘é-— .
1 32 = i
[ S ka, Sr CuO, ) J S Y T I TS Y Y
0 A L L e L " 1 1 il . L
G 01 02 03 04 05 06 07 0.8 0 5 1 o 1 5
T (K3 . H[T]

Figure 7.9: (a) The electrical and thermal conductivity of fully overdoped LSCO (with x = 0.3)
[83]. The electrical & is seen to agree well with the WF law with L/Lg being 0.83 and 0.86 for
samples with po = 23 and 49 uQ cm respectively. (b) The electrical and thermal conductivity of
highly-underdoped LSCO with x=0.06 all the way into the normal state [240]. The resistivity
is seen to be insulating at low temperatures and the electronic thermal conductivity in the
normal state is below experimental resolution (indicated by the spurious linear term measured
in insulating LSCO with x = 0 and x=0.05).
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2/ k(T = 0,H)/T increases for overdoped LSCO. This has indeed been reported very
recently by Hawthorn et al. and Sun et al. {240, 244]. This qualitatively consistent picture
needs to be contrasted with a quantitative test of the WF law. In PCCO, the violation
is only of a factor 2. The qualitative evidence presented above can draw no conclusion
with regards to such a quantitative violation. This leaves room for much future work,

for example at higher fields and in cleaner samples.

Inhomogeneity issues

The issue of inhomogeneity is important to address for high T, superconductors. In
particular, inhomogeneity is always found in both LSCO and PCCO compounds. Note
that whether it is intrisic to these superconductors or not is still an open issue. Regardless,
one may ask what effect this could have on an experimental verification of the WF law?

It turns out that inhomogeneity cannot be the cause of a violation of the WF law
at T = 0 although it may lead to some violation at finite temperature. To better
illustrate this, imagine two extreme cases of inhomogeneity: 1/ two different metals in
series linked with a metallic interface, and 2/ two different metals in parallel linked with
either a metallic or an insulating interface. In these cases, it is easy to convince oneself
that the WF law will still be satisfied at T = 0. At finite temperature, an additional
phononic contribution may come from the interface but will constitute no more (or no
less) of a violation of the WF law as any additional phononic term from the sample itself.

In short, it is clear that inhomogeneity is not the cause of the observed violation of

the WF in cuprate superconductors.

Antiferromagnetic correlations

It is interesting to note that recent reports show that their exists antiferromagnetic
correlations in cuprate superconductors when a magnetic field is applied [245, 246, 247].
As these may cause some localization of charge, it may lead one to wonder whether
or not it may be the cause of the reported violation of the WF law in cuprates. This
turns out not to be the case. Indeed, it is not expected theoretically as the effect of
localization does not affect the WF law. More convincingly though, the WF law was
recently studied near a field tuned quantum critical point in CeColns, a Heavy Fermion
system [59]. There, antiferromagnetic fluctuations are found above the QCP, and the WF

law is satisfied at T = 0 even very near the QCP where the AFM fluctuations are most
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prominent. Subsequently, the presence of AFM fluctuations in cuprates are probably not

responsible for the violation of the WF' law.

7.5.2 Theoretical proposals

The intriguing results of a violation of the WF law in PCCO has generated much theo-
retical work both to understand what is expected from different theoretical frameworks
which pertain to high T, superconductors [248, 249, 250, 251, 252, 253] but also in a
more general context of the validity of the WF law in extreme situations [254]. We will
review the main contributions and discuss them in terms of the non-violation of the WF

in overdoped cuprates.

t — J model: doped Mott insulator

Cuprate superconductors have long been thought to be well described by the simple ¢t —J
model in two dimensions [34]. The main idea of this treatment is that of starting from
a well-known state, the Mott insulator, and doping it with holes (or electrons). High T
cuprates at zero doping are indeed thought to form a Mott insulating state where J is
the antiferromagnetic exchange constant. Once holes (or electrons) are added, they still
feel a strong Coulomb repulsion, now with some degree of delocalization is parameterized
by a hopping term ¢. In this picture, the electron spins are ordered at low doping (Mott
insulator) but then electrons undergo spin-charge separation: the elementary excitations
are no longer electrons but rather spinons which have spin 1/2 and carry no charge and
another (or other) excitation(s) carrying the charge. The simplest such manifestation
would be a particle which has spin 0 and carries charge e. This spin charge separation
would take place through the phase diagram although, at sufficient doping, one may
expect the Coulomb interaction to be weak enough to recover a Fermi liquid state.

A direct implication of such a spin charge separated ground state would be a violation
of the WF law. Indeed, the fermionic heat transport (linear in T") would only arise from
the spin 1/2 spinons which do not carry charge, leading to no direct relation between
the heat and charge transport. This was derived to be the case by Houghton, Lee and
Marston [248] for the large-N solution of the t — J model. Using parameters relevant for
cuprates, they obtain a doping dependence of the Lorenz ratio shown in Fig. 7.10. It is
pointed out that at optimal doping, one expects L/Ly ~ 2 as was reported in PCCO

[46]. However, the violation remains large at higher dopings and one expects L/Lo ~ 1.5



7.5. NORMAL STATE 163

T=10.0K

L/L,

o o0z  oa 06 0.8 1
Electronor Hale Doping.  x

Figure 7.10: The violation of the WF law as a function of doping obtained in the large-N limit
of the t — J model [248].

for p = 0.26, the doping relevant to our T1-2201 crystals. The authors propose that this
discrepancy may be due to the large-N approximation. A proper derivation may result

in the restoration of a Fermi liquid at a doping lower than z = 0.26.

This result strongly emphasizes the power of our verification of the WF law on the
overdoped side of the phase diagram. It provides a clear constraint over this theory in
the fact that such spin-charge separation does not occur at all dopings and that a Fermi
liquid is restored at a doping no higher than x = 0.26 which, importantly, still hosts

superconductivity.

It is interesting to note that Loram et al. have reported long ago (1994) that the
elementary excitations of cuprates in the normal state were indeed charge e fermions
for a large range of doping (in YBCOgys for 0.5 < § < 1) [232]. They investigated
quantitatively the Wilson ratio (S/T)/ [(k—B/s"—B)—z- X x| which relates the electronic specific
heat v (or more generally the entropy S/T) and the magnetic susceptibility x. The
Wilson ratio is expected to be 1 for weakly-interacting electrons as is found for YBCO.
This ratio was also studied and yielded a ratio near 2 (expected for strongly correlated

electrons) in fully overdoped LSCO where the WF law is also seen to be satisfied [83].
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Figure 7.11: The phase diagram for the Z2 gauge model of Senthil and Fisher [36]. Below z.,
the WF law would be violated in this picture.

Z2 gauge model

Senthil and Fisher have proposed a theory for the superconductivity in cuprates which is
also based on spin-charge separation with electrons fractionalizing into [spin 1/2, charge
0] "spinons” and [spin 0, charge €] ”holons” [36, 255, 256, 257, 258]. The theoretical
treatment is based on a so-called Z2 gauge theory for which topological vortex excita-
tions ("visons”) are supported. The phase diagram obtained is shown in Fig. 7.11. At
low dopings, the visons are gapped below T* and lead to electron fractionalization. The
superconductivity is directly related to this fractionalization as it stems from the conden-
sation of holons. At higher dopings, the visons condense and effectively glue the holons
and spinons to form ”conventional” electrons [spin 1/2, charge €] and recover a Fermi
liquid. Of course, at T' = 0, this occurs at the critical doping where superconductivity
disappears (see Fig. 7.11).

In this picture, the WF law is naturally expected to break down as long as the visons
are gapped. For this reason, the verification of the WF law at a doping lower than z, of
Fig 7.11 (in other words, still under the superconducting dome) presents a direct proof
of the failure of this model. The same conclusion was reached at the same time by very
elegant studies of highly underdoped YBCO [259, 260] and B-2212 [261]. One of these

was a direct search for visons which were not found experimentally [259]. Another elegant
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experiment showed that the superconductivity, even in highly underdoped cuprates, has
a condensate made of charge 2e excitations: Copper pairs [260]. This was seen by
showing that each vortex carries one flux quantum h/2e rather than h/e expected if the
superconductivity stems from the condensation of charge e holons.

In summary, the verification of the WF law at a doping lower than z. (see Fig. 7.11)
provided a strong proof that the theory proposed by Senthil and Fisher [36] is not ade-
quate for cuprate superconductors. The same conclusion was reached at the same time

from beautiful experiments on the underdoped side of the phase diagram [259, 260, 261].

d-density wave

Theoretical investigation of the expected behavior for the WF law has been studied in
the context of the d-density wave theory for cuprate superconductors [249, 176, 251].
The main motivation behind the d-density wave picture is that of a order parameter
competing with superconductivity and which is responsible for the pseudogap. The T*
line is thought to reach zero temperature near optimal doping (p ~ 0.15 — 0.2). Beyond
this point, a pure d-wave state is recovered. Although this theory has yet to be proved
or disproved to apply successfully to cuprates, it is interesting to see if it is at least
consistent with our observations of the WF law.

Yang and Nayak have studied the charge and heat transport in this context and show
that a violation reminiscent of that observed in PCCO is possible but only in unrealistic
limits, namely, in the ultra-clean regime and for p = 0 where u is the chemical potential
[249]. However, they also point out that in the absence of d-density wave order (i.e. on
the overdoped side of the phase diagram), the WF law would be recovered. The authors
conclude that further experiments at lower dopings and in cleaner samples would be
required to verify their theory.

Other treatments by Kim and Carbotte [250] and Shaparov et. al. [251] have seen
that the WF law is not violated at 7' = 0. However, they argue that L/Lg has a strong
temperature dependence, either due to a frequency dependent scattering rate [250] or to
the presence of a magnetic field [251] which may be relevant for PCCO.

The treatments within the d-density wave formalism have the attractive behavior of
leading to no violation of the WF law in the overdoped region. It is however not clear that
they provide a good explanation of the violation of the WF law as observed in PCCO.

More work on clean underdoped cuprates will be necessary to verify this picture.
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Polarons

Work was also reported for the bi-polaron picture [252]. There, the expected behavior
of L/Ly at T — 0 is not calculated although it is thought to be in violation of the WF
law. The verification of the WF law in overdoped TI1-2201 suggests that their proposed
mechanism for superconductivity breaks down before the superconductivity disappears
(at p = 0.3). The authors suggest that a cross-over may occur between Bose condensation
at low dopings to Copper pairing (on the overdoped side) as the only way to reconcile

their picture with our experimental findings.

Summary

Our results on overdoped TI-2201 have set some strong constraints on many theoretical
frameworks for high T¢ cuprates, even ruling out one of them [36]. It also sets a difficult
challenge to reconcile the observed violation of the WF law in optimally doped PCCO and
its verification in strongly overdoped T1-2201. This will surely stimulate more theoretical

work.

7.5.3 Summary

In summary, we have studied the normal state of overdoped T1-2201 by applying a mag-
netic field large enough to destroy superconductivity [162]. The WF was verified to hold
perfectly within experimental errors which are estimated at 1%. This provides unam-
biguous evidence that spin-charge separation does not occur in overdoped cuprates but
that instead, a Fermi liquid ground state is recovered. This is in contrast to a reported
violation of the WF law in optimally doped PCCO [46]. This one is currently under
scrutiny with a recent claim of the verification of the WF law in a hole doped cuprate
at optimal doping [241]. Our results were verified in another system: fully overdoped
non-superconducting LSCO which gives confidence in its universality in cuprate super-
conductors [83]. Note that their results are less precise (L/Lg = 0.83 and 0.86 for samples
with po = 23 and 49 uf) cm respectively) due in part to the large phononic contribution
to the thermal conductivity in their samples. Our findings have set some strong con-
straints on several theories of high T, cuprates invoking spin-charge separation and went

as far a to rule out one of them.
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7.6 Superconducting state

Thermal conductivity has proved to be a powerful probe of unconventional superconduc-
tors. For an order parameter with d-wave symmetry, the electronic thermal conductivity
was predicted to be universal with respect to impurity content [80, 81]. This was con-
firmed experimentally at optimal doping in both YBCO and Bi-2212 [82, 84, 262].

In essence, thermal conductivity probes the low-energy excitations very near the gap
nodes, at energies as low as the temperatures reached: typically 100 mK (~ 1072 meV)
or so. This should be compared to a typical gap maximum of an optimally-doped cuprate
which is near Ag ~ 35 meV. This leads to a powerful tool to probe the nature of the gap
near the nodes which can then be compared to reports at higher energies (for example
ARPES) and can also put strong constraints on theories invoking small finite gaps rather
than a pure d-wave order parameter.

In this section, we will see that the results in the superconducting state of highly
overdoped T1-2201 are in quantitative agreement with the BCS treatment of d-wave
quasiparticles. We will also put a stringent upper limit on the magnitude of a subdomi-
nant imaginary order parameter iz in an order parameter of the form dy2_y2 + iz, with

T =38,dyy.

7.6.1 BCS theory for a d-wave superconductor

In the absence of a magnetic field, there is a large residual linear term in the thermal
conductivity of T1-2201, namely xo/T = 1.41 mW K~2 cm™!. A similar term has also
been observed in other hole-doped cuprates, albeit at optimal doping, where it is much
smaller: o/T = 0.14, 0.15 and 0.11 mW K~2 em™, in YBCO (82, 63], Bi-2212 [263,
84, 83] and LSCO (264, 243, 240, 63|, respectively. The results are showed in Fig. 7.12
along with those of s-wave superconductor V3Si. Within BCS theory applied to a d-
wave superconductor, this residual heat conduction is expected, arising from Zero-energy
quasiparticles induced by impurity scattering near the nodes in the d,2_,2 gap function.
In the clean limit, where the scattering rate I' < kgT./A, it is universal (in the sense
that it is independent of T') and it depends only on the ratio of the two quasiparticle
velocities (vp and v,) which govern the Dirac-like spectrum of nodal quasiparticles, £ =
vhk? + vik? [85):
ko _kjn vp v

T ~ahen T o) 2
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Figure 7.12: The thermal conductivity as a function of temperature for overdoped T1-2201,
optimally doped YBCO, LSCO and Bi-2212, and for s-wave superconductor V3Si (the data is
divided by two for clarity). The presence of a finite linear term x¢/7 is a clear indication of
nodes in the gap. In T1-2201, a very large linear term is observed which constitutes the first

report of a d-wave order parameter in such a highly overdoped cuprate.

where n is the number of CuO, planes per unit cell of height ¢ (along the c-axis), and k1
and k_; are unit vectors pointing in directions normal and tangential to the Fermi surface
at the node, respectively. In other words, vg is the Fermi velocity in the nodal direction
and vy is proportional to the slope of the gap at the node, dA/d¢ = hikpvy, with kr the

Fermi wavevector.

Applying Eq. 7.2 to T1-2201, for which n = 2 and ¢ = 23.2 A, we get vp /vy = 270. A
rough estimate using Fermi surface parameters typical of cuprates, namely vy = 2.5 x
107 cm/s and kp = 0.7 A~ 1 and the simplest d-wave gap function, A = Agcos2¢
(where dA/d¢ = 2A,), with the weak-coupling relation for a d-wave superconductor,
Ag = 2.14 kT, gives vp /vy = 210. This shows that the magnitude of so/T is in good
agreement with the simplest BCS analysis. In itself, this is the first evidence that such

a highly overdoped cuprate still displays d-wave superconductivity.

However, we have estimated earlier the purity regime of our sample via the resid-

'Both vp and kp were measured to be independent of doping and roughly equal in magnitude for
LSCO and Bi-2212 [87, 130, 265]



7.6. SUPERCONDUCTING STATE 169

H(T)

Figure 7.13: The thermal conductivity of T1-2201 as a function of magnetic field and normalized
to its value at H = 0. The full circles are obtained by extrapolating to T = 0 while the empty
circles come from a field sweep at T = 150 mK. The expected behavior is given by Eq. 7.3 and
the best fit is obtained with pvH = 1.

ual resistivity. This showed that our samples are in a moderately dirty regime with
AU [kpT, ~ 0.4. At finite T', corrections to Eq. 7.2 give an increase in /T [86]. Assum-
ing Ag = 2.14 kpT., the correction for Al'/kpT, = 0.4 is by a factor of approximately
1.5 [86]. Thus the correct value of vp/vy is probably closer to 270/1.5 = 180 1. It will
be interesting to pursue studies of the effect of inducing additional disorder on these
samples.

It is interesting to note that this value of I' is consistent with the magnitude of the
measured field dependence of k at low H [91]. Let us first note that a good quantitative
agreement was found in Zn-doped YBCO [88]. Although one expects roughly a field
dependence which is roughly proportional to v/H, the proper relation has the following

form: )
T
K/OO/ — 14 ' (73)
&0, H)/T  p\/1+ p? — sinh~1p
where p is given by p = % in the dirty limit and where a is a geometrical constant
0

1 Although it seems clear that I must be a sizable fraction of the gap maximum, the numerical
estimate for Ag used here (based on T¢) is open to question. In particular, a naive estimate of Ao based
instead on H.,(0) gives a significantly larger gap maximum.
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close to 1. A fit of the low field data of T1-2201 to this functional form gives pvH =
1.04+0.1 as seen in Fig. 7.13. This fit is reasonable only for H < 2 T as is expected with
an upper critical field near 13 T. Note that this is a good indication that we are in the
dirty limit (p > 1) through this whole field range. We can compare this fit to an estimate
using Al'/kpT, ~ 0.4. We get pvVH = 1.3 using Ag = 2.14 kgT,, v = 0.61 /AL Ay,
Ho = 13 T and a = 1. This quantitative agreement to theoretical predictions lends
credibility to both our data and to the theory which describes it.

The doping dependence of the zero temperature thermal conductivity has been inves-
tigated recently in LSCO and YBCO [243, 63]. It has provided a way to probe the nodes
of the gap and, indirectly, the gap maximum (assuming it has the simplest d-wave shape).
From optimal doping and in the overdoped side of the phase diagram, it seems that the
standard BCS relation between gap magnitude and transition temperature, Ay ox T,
holds well (although see Appendix D). Indeed, in optimally-doped YBCO (7. = 93 K)
and Bi-2212 (T, ~ 90 K), it is found that vp/vs = 14 and 19, respectively [263]. (The
value of 19 for Bi-2212 agrees very well with the value of 20 obtained from ARPES mea-
surements of vg and v, separately [263, 87].) Note that preliminary measurements on
optimally-doped TI-2201 give a value of vp/ve ~ 17 [266]. With the assumption that
A = Agcos2¢ (giving Ay x hkpvg/2), and that both vp and kr do not change as a
function of doping [87, 130, 265], we can see that Ag scales with T, on the overdoped
side of the phase diagram.

This picture breaks down on the underdoped side of the phase diagram as described
by Sutherland et. al. [63]. There, the extracted gap maximum is seen to grow with
underdoping while T, is reduced. The latter agrees instead with reported values of the
pseudogap [267, 268, 269, 270]. It is therefore identified to it and constitutes the first
evidence of the pseudogap at very low energies. This has been taken as evidence that
the pseudogap must have a d-wave symmetry with a linear density of state which leads
to the conclusion that the pseudogap is most likely of superconducting origin.

In summary, we have found a large residual linear term in the thermal conductivity
of overdoped T1-2201. It is in quantitative agreement with BCS theory for a d-wave su-
perconductor and provides the first experimental evidence that d-wave superconductivity
is maintained at such a high level of overdoping. There, the gap maximum scales with
T, as observed on the overdoped side of the phase diagram. This picture breaks down
on the underdoped side where the low energy excitations are governed by the pseudogap

which is concluded to be of superconducting origin.
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7.6.2 Limit on a subdominant order parameter

Several authors have proposed the existence of a quantum critical point (QCP) within the
superconducting dome in the phase diagram of cuprates, either as a theoretical prediction
[271] to explain the diagram itself or as suggested in various experiments [210]. Its
location is usually taken to be near optimal doping, in the neighbourhood of p = 0.2.
Although there is much evidence for its location, the nature of the QCP is still under
debate. If it is associated with a change in the symmetry of the superconducting order
parameter, Vojta et al. have argued that the most likely scenario is a transition from
a pure d,2_,2 state to a complex order parameter of the form dy2_y2 + iz, where x can
have either s or d,, symmetry [28, 272]. Dagan and Deutscher have recently reported a
split zero-bias anomaly in their tunneling on Y-123 thin films as soon as the material is
doped away from optimal doping, a feature which they attribute to the appearance of
a complex component to the order parameter in the bulk [273, 274]. The presence of a
subdominant component iz in the order parameter causes the nodes to be removed, as
the gap can no longer go to zero in any direction. The observation of a residual linear
term in the thermal conductivity, a direct consequence of nodes in the gap, therefore
excludes the possibility of any such subdominant order parameter. (More precisely, since
our measurement goes down to 100 mK, it puts an upper bound on the magnitude of |z]
relative to |dy2_2| at about 0.5 %.) Moreover, there is no subdominant order parameter
in T1-2201 at optimal doping [26]. In fact, a residual linear term is observed throughout
the phase diagram in LSCO and YBCO [63, 243]. In other words, if there truly is a QCP
between optimal doping at p ~ 0.16 and the critical point p. ~ 0.3, it does not appear

to be associated with the onset of a complex component in the order parameter.

7.7 Conclusion

In conclusion, the low-temperature transport properties of T-2201 with 7, = 15 K
show that spin-charge separation does not occur in strongly overdoped cuprates. The
normal state at 7' — 0 satisfies the Wiedemann-Franz law perfectly, demonstrating
that the only electronic excitations carrying heat and charge are Landau quasiparticles.
The superconducting state obeys BCS theory in that the residual heat conduction is
of the expected magnitude for a pure d-wave gap and the dependence of the low-energy

spectrum on doping strongly suggests that the gap scales with 7., in the conventional way
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for overdoped cuprates. This is the first clear experimental confirmation that a d-wave
order parameter is retained in such highly overdoped cuprates. Also, the possibility of a
sub-dominant order parameter (ix) is ruled out. Finally, T1-2201 seems to be a textbook
d-wave superconductor and it may serve as a reference for studies of the field dependence

and the effect of disorder of the thermal conductivity.
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Conclusion

The field of superconductivity has lived a strong revival of interest in the past twenty
years or so. Ome of the main reasons for this is the discovery of new materials where
the superconductivity eludes comprehension. In this thesis, we have first studied the
archetypal s-wave superconductor V3Si to obtain a solid basis for comparison. We then
moved to several other materials displaying a spread of new phenomena such as highly
anisotropic gap functions, multi-band superconductivity and the rich physics of the high
T; cuprates. To do so, we have performed systematic studies of the electronic thermal
conductivity at temperatures as low as 50 mK through their vortex states and into their
normal states with the help of magnetic fields of up to 13 T.

In V38Si, we were able to study the behavior of the thermal conductivity of an extreme
type II supercondutor at very low vortex densities for the first time. It was found that
it obeys the expected behavior for localized states tunneling between the vortex cores.
This also provided a basis for comparison for the unconventional superconductors that
were studied.

Indeed, the behavior in borocarbide LuNipBoC was found to deviate very strongly
from this conventional picture and the thermal conductivity was found to increase linearly
with field starting as soon as vortices entered the sample (at H_.). This was assigned to
an unprecedented anisotropy in the gap of a factor of at least 10. Our conclusion was
later verified by other measurements which also lead to a better understanding of the
shape of the gap. What’s more, borocarbides are probably mediated by a conventional
phonon mechanism. They serve as a great exemple of superconductors where the gap is
highly anisotropic but has no topological nodes and reminds us not to assign prematurely

a non-phononic mechanism to some anomalous behavior.
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In the layered NbSe;, we found two regimes for the level of delocalization of the quasi-
particles. At low fields, the states are localized within the vortex cores whereas they get
highly delocalized at a field much below H.y. These two regimes were identified with the
presence of two length scales for the superconductivity and, in turn, two gaps of different
magnitudes (a factor of roughly 3) on two different sets of Fermi sheets. This makes
NbSe; a multi-band superconductor much like the newly discovered MgB,. Our results
offered bulk evidence at low temperatures and complemented an angle resolved photoe-
mission spectroscopy study which came to the same conclusion but was only performed
at temperatures near T.. Moreover, a number of previous anomalous reports are now
understood naturally within this picture, such as the shrinking of vortex cores.

The overdoped cuprate superconductor TlyBayCuQOg, s with T, ~ 15 K was also stud-
ied in the superconducting state and all the way into its normal state, above H,y. The
Wiedemann-Franz law was verified with an experimental accuracy of 1%. This was the
first solid evidence that the ground state of cuprates is a Fermi-liquid in the overdoped
side of the phase diagram and displays no sign of spin-charge seperation. This result puts
strong constraints on the possible mechanisms of superconductivity in high T, cuprates
and will surely help lead to a comprehensive understanding of the phase diagram. In the
superconducting state, the BCS theory for a d-wave gap is satisfied quantitatively. This
lends additional credibility to this formalism.

In summary, we have studied a wide variety of superconductors ranging from con-
ventional V35i to the elusive high T, cuprates and found very different behaviors of the
thermal conductivity throughout the vortex state. This work has already stimulated
much theoretical interest as well as other experiments which have confirmed our conclu-
sions. It is my hope that this thesis will be used as a reference for the behavior of the

thermal conductivity in the vortex state of unconventional superconductors.



Appendix A

Cryogenics techniques

A.1 Cryogenic techniques

In this Appendix, we will discuss the technical aspects of the most common cryogenic
refrigerators: *He, He and dilution refrigerators. They typically reach temperatures of

1 K, 0.3 K and 0.01 K respectively. All of these were used for this thesis.

A.1.1 “He refrigerator

A “He refrigerator is the simplest form of cryogenic refrigerators that go below liquid
nitrogen temperature (77 K). It typically reaches a temperature of 1.2 K . It is also used
as the first cooling stage in more elaborate refrigerators as described below. In our lab,
our use of such a refrigerator is mostly for characterization purposes: it is easy to use,

has a low helium consumption and a short turnaround time.

Principle of operation The first step for cooling to or below 4 K is to immerse the
refrigerator in liquid helium which has a temperature of 4.2 K at atmospheric pressure.
The temperature is then lowered by decreasing the pressure of the helium bath, or,
in other words, pumping on it. This has the effect of taking away the most energetic
particles of the liquid, the ones that form the vapor pressure (which have the most kinetic
energy). This process is very important to understand as it is also used with slight (but

important) variations for the refrigerators we will discuss below.

Design The design that we use is seen in Fig. A.1 and is well described in [275]. The

sample stage is concealed in a vacuum can called the IVC (inner vacuum can). This is
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Figure A.1: The IVC of our “He refrigerator. This design is well explained in [275] and in the

text.

in contrast to other designs where the experiment sits directly in the liquid.

Also, instead of pumping on the helium bath (which would be costly and inefficient),
the cryostat is designed with a pot opened at one end to the helium bath and to a
pumping line on the other. This will allow the pot to fill with liquid helium after which,

pumping on this small volume of liquid will be enough to cool the experimental stage.

However, the task is not that simple. If one wishes to reach 1 K, the main concern
is to reduce the heat leak to the 1 K pot and the experimental stage. These heat leaks
come from (i) the helium bath which stays at 4.2 K, and (ii) the wires which go from
room temperature to the 1 K stage. For (i), several steps are taken: one needs a good
vacuum in the IVC to short out the heat channel from the bath to the experimental

stage that comes from surrounding gas. Next, the 1 K pot is connected to the cone seal
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via a brass link which is a poor conductor of heat. Finally, we use a very thin and long
stainless steel capillary tube to fill the pot with helium. Stainless steel is also a very poor
heat conductor. The size of the tube is determined to provide a perfect impedance: a
small enough flow so as not to create a strong thermal link to the helium bath, but large
enough to fill the pot at the same rate as it is depleted by pumping on it. As a note,
one can use a needle valve instead of a capillary. It has the advantage of being a variable
impedance but makes the design more complex. For (ii), we use thermalizing anchors
at both the 4 K stage and the 1 K stage. We are also careful in our choice of wires:
we use highly resistive alloys (manganin and constantan) whenever possible and copper
ones (very good conductors of heat) only when necessary, for example, to measure the
resistivity of low resistance samples.

The 1 K refrigerator used here is also equipped with generic thermometry that allows

the use of several experimental stages which can also be used in a *He system.

A.1.2 3He refrigerator

A 3He refrigerator has a typical base temperature of 0.3 K. The principle is identical:
lowering the pressure of a cold liquid. In practice, one uses both a *He pot as a first
cooling stage to condense 3He (1.2 K), and an additional *He pot to reach 0.3 K. A
lower temperature is reached by pumping on *He simply because the vapor pressure is
higher for this isotope of helium. The design is more complex in that it requires a closed
pumping system for *He due to its high cost. It is also more elaborate in the sense of

properly isolating each stages of the cryostat (4 K, 1.2 K and 0.3 K.).

A.1.3 Dilution refrigerator

A dilution refrigerator has a typical base temperature of 10 mK. It is more complex,
harder to use and has a longer turnaround time than the two refrigerators described

above.

Principle Again, a dilution refrigerator is equipped with a *He pot as a first cooling
stage. However, one can reach 10 mK by pumping on a mixture of 3He and “He. Fig. A.2
shows the phase diagram for such a mixture. Below the triple point, the mixture will
separate into two distinct phases: one has a high concentration of *He (the concentrated

phase) and the other, a low concentration (the dilute phase). They correspond to points
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Figure A.2: 3He-*He phase diagram. Below the triple point, the mixture phase separates into
a 3He rich phase (right equilibrium line) and a He dilute phase (left equilibrium line). The

operation of a dilution refrigerator involves ”diluting” the 3He dilute phase.

on the equilibrium line which are respectively to the right and to the left of the triple
point. However, in the dilute phase, the concentration of *He can never go below 6.6% at
any temperature. These two phases are separated by a boundary much as oil and water
are at room temperature. The cooling process involves "diluting” the *He dilute phase,
that is, reduce its concentration of *He. The system will then be out of equilibrium.
To recover it, *He will have to migrate from the rich to the dilute phase and across the
phase boundary. This will cost energy to these 3He particles. It will be taken from the
walls of the container of the helium mixture, cooling it down in the process. This can be
continued ad-infinitum and to as low a temperature as is desired since there will always
be at least 6.6 % 3He in the dilute phase.

Design In practice, many considerations have to be taken into account. The main ones
will be discussed here.

A schematic design is shown in Fig. A.3. Let us start by the dilution process and
follow the flow of *He through its closed circulation path. Once the mixture has been
cooled below the triple point of the phase diagram (Fig. A.2), the phase separation will
occur in the mixing chamber (MC). The ®He rich phase floats above the 3He dilute phase.
The latter will also have a phase boundary in the still. This is achieved by a proper design

and by using the correct amount of helium mixture. Diluting the *He dilute phase will
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Figure A.3: Schematic of a dilution refrigerator. The principle of operation is described in the

text.

be done by pumping on its boundary which is in the still (note that it is mostly 3He that
will evaporate due to its higher vapor pressure). This process is sometimes accelerated
and intensified by applying heat onto the still to help evaporate 3He.

Once this is done, the process described above will take place and the walls of the
MC will be cooled. It is crucial to have an efficient process for the heat to be transferred
from the walls of the MC to the *He which is in the rich phase. This is achieved by using
a sintered silver powder on these walls which will increase the contact area of the 3He
rich phase and the walls. The efficiency of this process can limit the base temperature of
a dilution refrigerator.

Also, since one reduces the concentration of 3He in the rich phase, it must be replen-
ished, otherwise the process cannot continue. To do so, the 3He that is pumped away
from the dilute phase is then injected back directly into the 3He rich phase. However,
it must first be pre-cooled otherwise, it will warm the MC. The first stage of precooling
involves the 1 K pot. It will cool the 3He from room temperature to 1.2 K and condense
it back to a liquid phase. Heat exchangers are then used to cool the incoming 3He further
to the same temperature as the mixture. It then leaks back into the 3He rich phase and

the process can continue.
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Finally, the temperature of the MC can be varied and controlled by directly heating
it. This provides a variable temperature cryostat with a base temperature of typically
10 mK.

A.1.4 Summary

In summary, experiments can be performed at temperatures ranging from 0.01 K to
room temperature. In may instances, a dilution refrigerator is used to freeze out various
mechanisms which cloud the physics that we wish to study. This "freezing out” may
be in the form of reducing thermal fluctuations such that one reaches a regime where
quantum mechanical effects are most visible, or, in our case, to reduce (or ”freeze”)
the contribution of phononic thermal conductivity. However, a *He refrigerator is often

sufficient to perform characterization experiments.



Appendix B

Heat losses

The problem of heat losses is central in a thermal conductivity experiment. This appendix
will serve to give a quantitative analysis of the losses due to heat in both the dilution

refrigerator and “He refrigerator that have been used for this thesis.

B.1 Dilution refrigerator

As explained in the text, heat losses can have several sources: through the measurement
wires (conduction), via radiation to the walls of the cryostat (radiation) or through gas in
the inner vacuum chamber (IVC) (convection). The latter two mechanisms are negligible
for experiments below 1 K (see the section for the *He refrigerator) unless there is a leak
in the inner vacuum chamber. Only the conduction channel is left and will be analyzed
below.

Fig. B.1a shows a detailed diagram of the thermal conduction paths. The discussion
will be fully analogous to one of a electrical diagram. It is worth noting that the heat
current ) stems from the heater which acts as a constant current source. The thermal
paths are represented as thermal resistances and denoted by W = 1/K (with K being
the thermal conductance).

The thermal resistance of these paths is estimated in Table B.1. It is obvious from
these numbers that we can neglect W3 and W4 on the thermal path from the heater to the
sample and W4, W5 and We from the path from the sample to the thermometer (note:
This is important for the thermalisation of the thermometer as discussed in Chapter 3.).
The diagram reduces then to that on Fig B.1b. There, we have 1/W7 ~ 1/W1 +
1/W2 and 1/W8 =~ 1/W6 + 1/W2 thus giving W7 ~ 110 W K1 and W8 ~

181



182 APPENDIX B. HEAT LOSSES

Heo’rer W3 W4 Wc Ws We

wi

()

Figure B.1: The resistive diagram for the dilution refrigerator thermal conductivity setup. (a)
Extensive diagram showing the full paths for heat conduction: W1 = 2 PtW wires in parallel;
W2 = 2 Kapton® film strips in parallel; W3 = Interface between heater and Ag foil (Ge
varnish); W4 = Ag wire; We = contact to the sample; Ws = sample; W5 = interface from the
wire to the thermometer (see Fig. 3.6); W6 = 4 PtW wires in parallel. (b) A simplified version

of the diagram taking into account which thermal resistances are negligible. The heat loss will
be given by Q%#A.
09107 W K1,

The heat loss analysis is now substantially simplified. As shown on Fig. B.1b, there
are three heat currents that will flow in our diagram. The relative amount of heat loss is
given by @%’& If one assumes that Q; > Q2+ Q3+ Qg the n a further simplification
can be made and yields Q2+g‘l’+Q4 = WetWedWe 4 WeilWe | We  (As a note, both the

w1
thermal resistance of the sample and of the contact nearest the cold base are actually

measured. For the latter, instead of using the thermal gradient across the sample, we
use the gradient across the cold thermometer and the base temperature. We need then
to assume that the hot contact has roughly the same value as the cold contact.)

This analysis is done for several samples in Fig. B.2. The level of heat loss stays
below the 1 % level except for NbSe, in H = 0 where it reaches 3 %. This analysis shows
that the heat loss in our dilution refrigerator setup can be neglected in most cases and

reaches tolerably small values for the most resistive samples.
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w t 1 k (mW K1 ¢cm™1) W (mW~! K)
PtW wire 25 pm g 16 cm 08T 0.4 10*7/T
Kapton® film | 100 um 7pum 1lcm 6.5 1072T 2.2 10%7/T
Vespel posts 0.5mm 05mm 1cm 18 1073712 0.22 10+% /T2
(SP1 type)
Ag Wire 50 pym ¢ 2 cm 1.25 1037 0.8 10*3/T
Interface 1 0.5 mm ¢ 5 mm 0.7/ Area [mm?|T?
=0.1/T3
Interface 2 2 mm 3 mm 0.7/ Area [mm?] T3
=0.1/T3

Table B.1: The thermal resistance of the various components of the dilution refrigerator thermal
conductivity setup. These values are correct for T < 1 K [107] . Interface 1 and 2 designate
respectively the interface from the heater to the Ag foil W3 and from each thermometer to
the thermal Ag wire W5 (see Fig. 3.6). For these, we have taken the value for a glue-copper
interface [107], the closest data available to a Ge varnish-Kapton® interface.

B.2 “He refrigerator

Here the heat loss analysis is more complex for several reasons: (i) there may be different
contributions (conduction, radiation and convection), (ii) the temperature range is much
larger and the thermal conductance of the different samples varies significantly. For these
reasons, it is wise to have the relevant numbers for our setup at hand and check if we
suffer from heat losses case by case. This section will survey these relevant numbers and

will show examples of measured samples.

B.2.1 Conduction

The analysis as done for the dilution refrigerator can be done here. Fig. B.3 shows the
effective resistive diagram. For this, we have neglected a number of thermal interface
resistances because they are thought to be negligible due to the temperature range and
their relatively large cross section.

The measurement wires are 12 pm diameter PtW with a length of 1 cm. They have
an electrical resistance of roughly 30 . The wire that is used between the heater and the

sample is usually 50 ym diameter Ag wire with a length of typically 1 cm. In Fig. B.4,
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Figure B.2: The relative heat loss is shown as a function of temperature from 40 mK < T <
500 mK for V3Si and NbSe; in zero field (the most resistive samples measured) and in H = 1.5 T
for V3Si (the most resistive sample at higher temperatures) and H = 4.5 T, in the normal state
of NbSe; (as an example of a sample with a high conductivity). The level of heat loss is below

the 1 % level in all cases except for NbSes where is reaches 3 % at the lowest temperature.

we have plotted the heat loss as a function of temperature for V3Si as an example. It
remains below 0.1 % throughout the range of temperature. To do this, we have assumed
that the thermal conductivity of the PtW wire has the same temperature dependence as

that of silver.

B.2.2 Radiation

It is difficult to obtain a general analysis of the heat loss for a setup. It requires to
knowing the characteristics of the samples that is measured, or more precisely, the thermal
resistance of its contacts and of W1 from Fig. B.3 with respects to that of the sample
itself. Indeed, we typically always use a temperature gradient across the sample of
AT/T = 4 % but the gradient it creates across the contacts and across W1 can vary
~widely. As a result, the temperature difference between "heat on” and ”heat off” for the
sample, the thermometers and most importantly, the heater will vary. The heat current

to which the loss must be compared also varies depending on the thermal resistance of
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Figure B.3: The effective resistive diagram for the *He refrigerator thermal conductivity setup
with the following thermal paths: W1 = Ag wire from the heater to the sample; W2 = 3 PtW
wire in parallel; W3 = 5 PtW wires in parallel; Wc = contact; Ws = sample. The heat loss
will be given by @—%jﬂﬁ
the sample such as to obtain AT/T =4 %.

The best way to present this analysis is to show the heat current that would be lost
for a number of different temperature profiles. This can then be compared to the heat
applied to any sample as long as the temperature profile is known.

To simplify the analysis, we will make a series of assumptions:

e We neglect the heat lost via the sample itself and only consider the one lost via
the heater and the thermometers. They have respectively surface areas of roughly

12 mm?2(2 sides of 2 mm by 3 mm) and 5 mm?(2 sides of 1.5 mm by 1.5 mm).

e The thermal resistance of each contact is the same and is proportional to the
thermal resistance of the sample. This is usually a good approximation !. The

constant of proportionality is usually between 0.5 and 2.
e The thermal resistance W1 (see Fig. B.3) is proportional to that of the sample.
e The temperature gradient across the sample is AT/T = 4 %.

The emissivities of the heater and the vacuum can are equal to 1 (the worse possible

scenario).

I This approximation is valid not necessarily when good electrical contacts are obtained as phonons
will often dominate the transfer of heat across the contacts at high temperature. More important is
the geometry of the sample: its thermal conductance must be comparable to that of the contacts. Long
samples with a thin cross-section are therefore favorable.
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Figure B.4: Heat loss in the dipper due to the measurement wires for V3Si.

The amount of heat lost via radiation Q,adiation 1oss 1S plotted in Fig. B.5 for different
values of W1/Wsampre and of Weontact/ Wample 8s a function of temperature. The heat
that was applied to a V3Si sample is also shown. It must be first noted that the heat lost
is negligible at low temperature. However, it increases very fast at higher temperature.
To minimize the heat loss, it is important to have ”good contacts”, or more accurately,
a small Weontact/Wsample- Also, a smaller heat gradient will decrease any radiative heat
loss. It is also interesting to note that one must be very careful in the choice of W1: it
may seem counter-intuitive but for the same W1, a sample with lower resistance may

suffer a greater heat loss. We are usually in the case where W1 /Wsampte < 0.1.

For V35i, we are in the situation where W,nsact/ Wampte = 0.5 and W1/ Wsampte = 0.01.
This leads to a heat loss of 3 x 10~% Watt, roughly 3 % of the heat applied (Q = 8 x 1074).

It is safe to say that there is minimal heat loss up to 100 K.

Note that heat loss via radiation has the distinct signature of giving a measured s
that is dependent of the heat that is applied. This is simply because the higher the
applied heat, the higher the temperature of the components are and the higher the heat
loss. Seeing the present analysis has taken a number of assumptions, a direct way to

know whether we suffer from heat losses is to verify that » is independent of applied Q.
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Figure B.5: Relative heat loss in the dipper due to radiation for different parameters, namely,
W1/Wiample- Panel a, b and ¢ use respectively Weontact/Wsampie €qual to 0.5, 1 and 2. The
heat current applied to a V3Si sample is shown for comparison. For heat loss by radiation to

be negligible, one must have Q'md < Qapplied.

B.2.3 Convection

The heat loss through convection is very low as long as one keeps a good vacuum in the
IVC. A typical value for this vacuum is P = 10~ mbar. The same analysis is done as

for the case of radiation but with the following formalism:

Qeonvection [Watt] =~ 0.02 a A [cm?] P [mbar] AT [K] (B.1)

where AT is the difference of temperature of the components (heater and thermome-
ters) when the heat is applied and when it is off. We use @ = 1, the worse possible
case. This is shown as a function of the same parameters as for the radiation analysis
in Fig. B.6. As is immediately obvious, even in the worse cases, this contribution is

completely negligible.
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Figure B.6: Heat loss in the dipper due to convection for different parameters, namely,
W1/Wsampte- Panel a, b and ¢ use respectively Weontact/Wsample €qual to 0.5, 1 and 2. The

heat current applied to a V3Si sample is shown for comparison.
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Contacts and oxygenation of T1-2201

Obtaining good quality contacts on cuprate superconductors have proven to be difficult as
an insulating oxyde layer is often found on the surface of crystals. It is usually necessary
to anneal the contacts (such that the silver diffuses into the crystal) for them to be
metallic. What’s more, the samples of TI-2201 that were used were extremely small,
making it difficult to make such contacts. In addition, the samples had to be annealed
in oxygen to fix the doping level. The procedure used is described in this appendix.
The contacts were made with Epo-Tex H20E silver epoxy by first applying it to the
sample using a thin 12 micron gold wire. Care was taken to apply the epoxy on the
side (thickness) of the sample for both current and voltage pads. The epoxy was then
hardened in air at 150 °C for a few minutes. To obtain good metallic contacts, the sample
then had to be annealed in 1 bar of flowing O, at a temperature of 450 °C for one hour,
to ensure diffusion of the silver into the sample. The oxygenation procedure (to set the
oxygen content or doping level) was done immediately after in the same conditions (same
oven and same flow of oxygen) but a reduced temperature of 350 °C for 48 hours. A
complete phase diagram of T1-2201 can be found in [276] but the one relevant for our
crystals is found in [218]. The oxygenation setup is shown in Fig. C.1: the sample was
placed in a clean quartz crucible (designed by Harry Zhang and myself) which was put
in a quartz tube (both of them were made by the glass blowing shop at the university
of Toronto). The oxygen atmosphere was obtained by continuously flowing clean oxygen
from the top of the quartz tube and having it escape from the other side to air (although
through regular oil both to avoid a backflow of air and to avoid a vapor pressure of the
liquid which may contaminate the oxygen atmosphere). The quartz tube was introduced

through a hole at the top of a muffle furnace (Thermolyne model F48000). We used high-
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Figure C.1: The oxygenation setup used to anneal the silver epoxy contacts (450 °C for 1 hour)
and set the oxygen content (350 °C for 48 hours) of T1-2201 crystals as described in the text.

purity 5N oxygen but cleaned it further by first putting it through a catalyst converter
(usually used to filter the exhaust from cars) which was heated to 500 °C for maximum
efficiency and then cryogenically filtering it through a liquid nitrogen cold trap.

After the annealing procedure, we attached measurement leads onto the sample.
25 pm silver wires were used. They were "glued” to the current and voltage pads using
Dupont 4929N silver paint. For this delicate work to be possible, we used 1-acetoxy-
2-butoxyethane with chemical formula CsH;603 (from Sigma Aldrich) as a solvent for
the silver paint. It has the advantage of not drying very quickly, thus giving enough
time to apply very small beads of paint onto the contacts. These were applied under a
microscope with a tool made of a 15-25 um wire. Note that great care was taken to have
a good mechanical contact between the silver wire and the contact pads. This ensures a
better electrical contacts.

This procedure resulted in typical contact resistance of the order of 0.1  at low
temperature and homogeneous oxygen content with transition temperature as narrow as
1 K.



Appendix D

Penetration depth for overdoped
T1-2201

In the BCS formalism for a d-wave superconductor, the thermal conductivity and the
penetration depth are related directly as they both depend on the ratio of vp/v,. This
has been worked out in detail by Durst and Lee [85] who show that while xqo/T" will
be independent of Fermi-liquid and vertex corrections, the penetration depth will not,
and may contain an additional ”fudge” factor named o stemming from Fermi liquid

corrections. The resulting relations for these quantities are:

_kin,vp | v k3 n vp
w0/ =330, + o) = 30 d %) (D.1)
pn(T) _ SEA2(T) _ 2n2kpn , vr
m*  4drer 7w R2d. ('U2 T (D:2)

where n/d is the average distance between CuO, planes, vr and v, are the velocities
associated with a d-wave gap, p, is the normal fluid density, m* is the effective mass and
A is the penetration depth. From these, we obtain the following relation between the
slope of the temperature dependence of the penetration depth at low temperature and
the thermal conductivity:

dA2(T)
dT

= —2.93 x 10" koo /T o (D.3)

with X in meters and kgo/7 in W K=2 m~1. This relation has been applied at optimal
doping in both YBCO and BSCCO [263] giving values of o being 0.46 for YBCO and

0.43 for BSCCO, while a? = 1 when there are no Fermi liquid corrections.
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Figure D.1: The penetration depth plotted as A2(0)/\?(T") versus temperature for optimally
doped YBCO (277, 278], BSCCO [279] and T1-2201 [215].

In the light of the quantitative agreement of our thermal conductivity data in strongly
overdoped TI1-2201 assuming a pure d-wave gap and the weak coupling relation for d-
wave superconductors (Ag = 2.14 kgT,), it is worthwhile investigating whether or not
the penetration depth is also in accordance with this analysis. Although there is no good
quality data on the temperature dependence of A in overdoped T1-2201 (see [175] for the
only report to date), we can still conclude that a strong discrepancy occurs on the basis
of the celebrated Uemura plot [280, 281].

It was found very early on that the zero temperature superfluid density (ps(0)/m* o
A~2(0)) scales with T, both on the underdoped and the overdoped side of the phase dia-
gram of cuprates. This was a great surprise as the superfluid density would be expected
to scale with the normal state carrier density (proportional to the doping) but instead,
this picture breaks down for overdoped cuprates. For our purposes, it suffices to real-
ize that the zero temperature penetration depth of overdoped cuprates and T1-2201 in
particular is known and scales with 7. It is then also natural to argue that it would be
unphysical to have a negative curvature for A=2(T") 1.

Let us start with optimally doped samples. For these, A=%(T") has been measured
reliably [215] and is shown in Fig. D.1. Along with it are the same figures for optimally
doped YBCO and BSCCO. In all cases, we see the typical linear temperature dependence
at low T. However, this slope extrapolates to a temperature near T, for T1-2201 and
higher for both BSCCO and YBCO (to varying degrees). Using A\(0) = 1650 A, we have
dA"3(T)/dT = —4.59 x 10" m~2K ~! which leads to a?kg/T = 0.16 mW K~2cm ~1.

1This is actually verified by these early experiments although the temperature dependence of A~%(T")
is surely not reliable [280, 281]
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Figure D.2: (a) A schematic of the limiting behavior of the penetration depth as a function of
temperature for various T, using the fact that the zero temperature X scales with T, (the Uemura
plot). (b) For overdoped T1-2201, —dA~%(T')/dT will lie inside the grey box according to our
analysis. In contrast, the corresponding value of the thermal conductivity 2.93 x 10%3k00/T (in
the appropriate units) drawn schematically with points being measured data and the broken
line is obtained using the BCS analysis with a simple d-wave gap which leads to kgo/T o
1/Ap ox 1/T,. The discrepancy may be accounted for by the Fermi-liquid correction factor a2

but this one will have to be smaller than 0.1 for a T, ~ 15 K which may be unphysical.

Preliminary results on optimally doped T1-2201 give sg/7 ~ 0.09 mW K~2cm —' and
leads to a? ~ 1.8 [7].

On the overdoped side, we use the following:

A\ %(0) scales with T, (Uemura plot). This can be written as A=2(0) = A;3(0) T, / TPt

where opt stands for optimal doping.

e The slope at low temperature of A=%(T')i s between zero and —1/T,, i.e. A~2(T)

has no positive curvature (the contrary would not be physical).

This is shown schematically on Fig. D.2a where the penetration depth is plotted against
temperature for samples with different 7,. The solid lines shows the limiting slope at low
temperature which yield no negative curvature and the dotted line shows the limiting case

of a slope equal to zero. Note immediately that the limiting slope will have a constant
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magnitude thus leading to the relation:

1 1
2.93 x 1013 7ot

0 < &®koo/T < (D.4)

Since the slope of A=2(T) for the optimally doped sample is —1/T, then 0 < a?kgo/T <
0.16 mW K~2cm ~! for overdoped T1-2201. This is displayed in Fig. D.2b along with the
expected dependence of kgo/T using a pure d-wave gap and Ay = 2.14 kgT, which leads
to koo o< 1/T, (as seems to be the case according to our measurements). Indeed, we find
koo/T = 1.41 mW K~2cm ~! for a sample with T, ~ 15 K, nearly a factor of ten larger
than the maximum expected from our analysis of the penetration depth.

This picture mayb e reconciled if one assumes that the Fermi-liquid corrections
(parametrized by o?) becomes more pronounced (a? < 0.1 for T, ~ 15 K) as one over-
dopes. It would imply that the quasiparticles are increasingly interacting which may be
counter-intuitive if one believes that a more conventional Fermi-liquid is approached by
overdoping.

It will therefore be interesting to obtain more reliable data for the penetration depth
in overdoped TI-2201 and the equivalent data for thermal conductivity. Once this is
done, one may make more specific statements about the breakdown of the BCS picture

of d-wave quasiparticles on the overdoped side of the phase diagram.
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